- Zuhause
- >
Nachrichten
Röntgen-Einkristall-Diffraktometer werden hauptsächlich verwendet, um die dreidimensionale räumliche Struktur und Elektronenwolkendichte von kristallinen Substanzen wie anorganischen, organischen und Metallkomplexen zu bestimmen und die Struktur von speziellen Materialien wie Zwillingskristallen, nichtkommensurablen Kristallen, Quasikristallen usw. zu analysieren. Bestimmen Sie den genauen dreidimensionalen Raum (einschließlich Bindungslänge, Bindungswinkel, Konfiguration, Konformation und sogar Bindungselektronendichte) von neuen zusammengesetzten (kristallinen) Molekülen und die tatsächliche Anordnung der Moleküle im Gitter; Einkristall-Röntgen-Diffraktometer kann Informationen über die Kristallzellparameter, Raumgruppe, Molekülstruktur, intermolekulare Wasserstoffbrücken und schwache Wechselwirkungen sowie Strukturinformationen wie Molekülkonfiguration und -konformation liefern. Einkristall-XRD wird häufig in der analytischen Forschung in der chemischen Kristallographie, Molekularbiologie, Pharmakologie, Mineralogie und Materialwissenschaft verwendet. Die Röntgenbeugung von Einzelkristallen weist eine hohe Präzision auf: 2θ-Winkel-Wiederholgenauigkeit: 0,0001°; Minimaler Schrittwinkel: 0,0001°; Temperaturregelbereich: 100 K - 300 K Regelgenauigkeit: ±0,3K Einkristall-Winkelmessgerät wählt vier konzentrische Abtastkreise aus. Die Einkristall-XRD verwendet eine Niedertemperaturkonfiguration. Das technische Personal des Unternehmens hat die Installation und Fehlerbehebung des ausländischen Einkristall-Röntgendiffraktometers abgeschlossen, und die Testergebnisse haben die ausländischen Benutzer sehr zufriedengestellt. Gleichzeitig wurden die Funktionalität, Stabilität und der Kundendienst des Instruments von den ausländischen Benutzern einhellig gelobt. Insgesamt spielt das Röntgen-Einkristall-Diffraktometer eine unersetzliche Rolle als wichtiges wissenschaftliches Instrument in der Forschung und Anwendung in vielen Disziplinen. Mit der kontinuierlichen Weiterentwicklung und Innovation der Technologie glauben wir, dass die Einkristall-XRD in Zukunft ihren einzigartigen Wert und ihr Potenzial in noch mehr Bereichen unter Beweis stellen wird.
Das Röntgen-Einkristall-Diffraktometer TD-5000 wird hauptsächlich verwendet, um die dreidimensionale räumliche Struktur und Elektronenwolkendichte von kristallinen Substanzen wie anorganischen, organischen und Metallkomplexen zu bestimmen und die Struktur von Spezialmaterialien wie Zwillingskristallen, nicht-kommensurablen Kristallen, Quasikristallen usw. zu analysieren. Bestimmen Sie den genauen dreidimensionalen Raum (einschließlich Bindungslänge, Bindungswinkel, Konfiguration, Konformation und sogar Bindungselektronendichte) neuer zusammengesetzter (kristalliner) Moleküle und die tatsächliche Anordnung der Moleküle im Gitter. Das Röntgen-Einkristall-Diffraktometer kann Informationen zu Kristallzellparametern, Raumgruppe, Kristallmolekülstruktur, intermolekularen Wasserstoffbrücken und schwachen Wechselwirkungen sowie Strukturinformationen wie Molekülkonfiguration und -konformation liefern. Einkristall-XRD wird häufig in der analytischen Forschung in der chemischen Kristallographie, Molekularbiologie, Pharmakologie, Mineralogie und Materialwissenschaft verwendet. Das Einkristall-Diffraktometer verwendet die Vierkreis-Konzentrizitätstechnik, um sicherzustellen, dass der Mittelpunkt des Winkelmessgeräts unabhängig von der Drehung unverändert bleibt. Dadurch wird das Ziel erreicht, die genauesten Daten zu erhalten und eine höhere Integrität zu erreichen. Die Vierkreis-Konzentrizität ist eine notwendige Voraussetzung für das herkömmliche Scannen von Einkristallen. Das technische Personal des Unternehmens hat die Installation und Fehlerbehebung des ausländischen Einkristall-Röntgendiffraktometers abgeschlossen, und die Testergebnisse haben die ausländischen Benutzer sehr zufriedengestellt. Gleichzeitig wurden die Funktionalität, Stabilität und der Kundendienst des Instruments von den ausländischen Benutzern einhellig gelobt.
Die Mikro-CT-Technologie bietet erhebliche Vorteile bei der Charakterisierung von Keramik, da sie die Verbundstruktur im Inneren des Materials ohne Beschädigung sichtbar machen und die Schlüsseltechnologie bei der Herstellung von Keramik wiederherstellen kann.