Hintergrund

Nachrichten

Hochpräziser Probenaustausch sichert die Zuverlässigkeit wissenschaftlicher Forschungsergebnisse

Der in Röntgendiffraktometern verwendete automatische Probenwechsler ist ein Gerät zum automatisierten Probenwechsel, das die Effizienz und Genauigkeit von Röntgenbeugungsexperimenten verbessern soll. Angetrieben von einem importierten Schrittmotor und gesteuert von einer importierten speicherprogrammierbaren Steuerung (SPS) von Siemens ist ein manueller Probenwechsel nicht erforderlich. Das System misst Proben kontinuierlich und speichert die Daten automatisch. Für eine kontinuierliche Messung können mehrere Proben gleichzeitig geladen werden. Die Hauptkomponenten eines automatischen Probenwechslers sind: Probentransfermechanismus: umfasst normalerweise ein Förderband, eine elastische Druckplatte und einen Antriebsmotor, der für den sequentiellen Transfer der Testprobenplatten zur Entnahmeposition verantwortlich ist. Mechanismus zum Austauschen der Proben: Er besteht im Allgemeinen aus Klemmkomponenten, Antriebskomponenten und einem Drehtisch und kann die Probenplatte automatisch zwischen der Aufnahmeposition des Förderbands und der Probenbühne des Beugungsinstruments austauschen. Sensormodul: z. B. ein fotoelektrisches Sensormodul und ein Fotowiderstandssensormodul, das zum Erkennen der Position der Probe und des Betriebsstatus des Diffraktometers verwendet wird, um das Schaltungsmodul zu steuern und entsprechende Steueraktionen auszuführen. Steuerkreismodul: Verbinden und steuern Sie die Zusammenarbeit der oben genannten Mechanismen und Module, um einen genauen und stabilen Betrieb des automatischen Probenwechselprozesses sicherzustellen. Stromversorgungsmodul: Bietet Stromversorgungsunterstützung für das gesamte automatische Probenwechselgerät. 2. Funktionsprinzip des automatischen Probenwechslers: Nachdem das Diffraktometer die Prüfung der aktuellen Probe abgeschlossen hat, erkennt das Sensormodul die Zustandsänderung des Diffraktometer-Verschlusslichts und überträgt das Signal an das Steuerschaltungsmodul. Nach dem Empfang des Signals aktiviert das Steuerschaltungsmodul den Probenaustauschmechanismus, um ihn zur Aufnahmeposition des Förderbands und zum Probentisch des Beugungsinstruments zu bewegen, und klemmt die Probenplatten jeweils an den beiden Positionen durch die Klemmteile fest. Anschließend tauscht der Probenaustauschmechanismus die Positionen der beiden Probenplatten, um den Probenaustauschvorgang abzuschließen. Anschließend startet das Förderband und transportiert die nächste Probentafel zur Aufnahmeposition, wo auf den nächsten Probenwechsel gewartet wird. 3. Vorteile und Eigenschaften automatischer Probenwechsler: • Verbessern Sie die Testeffizienz: Es kann Proben während des Testvorgangs des Beugungsinstruments automatisch und ohne manuelles Eingreifen austauschen, wodurch der Testzyklus erheblich verkürzt und die Arbeitseffizienz verbessert wird. • Reduzieren Sie menschliche Fehler: Vermeiden Sie Bedienungsfehler und Irrtümer, die beim manuellen Ersetzen von Proben auftreten können, und verbessern Sie die Genauigkeit und Zuverlässigkeit der Testergebnisse. • Instrumentenschutz: Reduziert die Möglichkeit eines Instrumentenausfalls durch häufiges manuelles Öffnen und Schließen der Diffraktometertür und verlängert die Lebensdauer des Diffraktometers. • Geeignet zum Testen einer großen Anzahl von Proben: Es kann mehrere Proben laden, um den Anforderungen des kontinuierlichen Testens einer großen Anzahl von Proben gerecht zu werden, und eignet sich für die Hochdurchsatzerkennung in Bereichen wie wissenschaftlicher Forschung und Produktion. Zusammenfassend lässt sich sagen, dass der in Röntgenbeugungsinstrumenten verwendete automatische Probenwechsler eine effiziente und präzise automatisierte Ausrüstung ist, die viele Annehmlichkeiten und Vorteile für Röntgenbeugungsexperimente mit sich bringt und zur Verbesserung der experimentellen Effizienz und Qualität beiträgt.

2025/03/24
LESEN SIE WEITER
Das Geheimnis und die Anwendung des Graphit-Kristallmonochromators

Der in Röntgendiffraktometern verwendete Graphit-Kristallmonochromator ist eine Schlüsselkomponente zur Auswahl bestimmter Wellenlängen von Röntgenstrahlen und zur Entfernung unerwünschter Strahlung wie Kβ-Linien und fluoreszierender Röntgenstrahlung. Der Graphit-Kristallmonochromator ist eine vor dem Röntgendetektor installierte Komponente, die die durch den Empfangsspalt tretenden Röntgenstrahlen monochromatisiert und nur die charakteristischen Kα-Röntgenstrahlen im Röntgenspektrum erkennt. Durch den Einsatz dieses Geräts können kontinuierliche Röntgenstrahlen, charakteristische Kβ-Röntgenstrahlen und fluoreszierende Röntgenstrahlen vollständig eliminiert werden, was eine Röntgenbeugungsanalyse mit hohem Signal-Rausch-Verhältnis ermöglicht. Wenn Röntgenröhren mit Kupfertargets in Verbindung mit entsprechenden Monochromatoren verwendet werden, können von Mn-, Fe-, Co- und Ni-basierten Proben erzeugte fluoreszierende Röntgenstrahlen eliminiert werden, wodurch diese für die Analyse verschiedener Proben geeignet werden. Funktionsprinzip: Bragg-Beugung: Nach dem Braggschen Gesetz tritt Beugung auf, wenn Röntgenstrahlen in einem bestimmten Winkel auf einen Kristall treffen und 2dsin θ = n λ (wobei d der Netzebenenabstand des Kristalls, θ der Einfallswinkel, λ die Wellenlänge der Röntgenstrahlung und n eine Ganzzahl ist) ist. Dieses Prinzip wird genutzt, um die Ausrichtung des Kristalls so anzupassen, dass nur Röntgenstrahlen, die bestimmte Bedingungen erfüllen, hindurchtreten können. Dadurch wird die Auswahl der Röntgenwellenlängen erreicht. Energieauflösung: Aufgrund des Interplanarabstands und der strukturellen Eigenschaften von Graphitkristallen können Röntgenstrahlen unterschiedlicher Energie effektiv unterschieden werden. Ein Graphit-Kristallmonochromator mit hoher Energieauflösung kann unerwünschte Strahlung weiter reduzieren und die Qualität der Beugungsdaten verbessern. Strukturelle Merkmale: Gebogene Form: Graphit-Monochromatoren mit gekrümmtem Kristall haben typischerweise eine gekrümmte Form, die die Fokussierung der Röntgenstrahlen und die Verbesserung der Beugungseffizienz unterstützt. Gleichzeitig trägt die gekrümmte Form dazu bei, die Belastung des Kristalls zu reduzieren und seine Stabilität und Lebensdauer zu verbessern. Hochreiner Graphit: Graphit-Monochromatoren mit gekrümmtem Kristall bestehen normalerweise aus hochreinem Graphitmaterial, um eine gute Beugungsleistung und Stabilität zu gewährleisten. Hohe Beugungseffizienz: Es verfügt über eine hohe Beugungseffizienz, die Röntgenstrahlen der gewünschten Wellenlänge effektiv auswählen und so die Qualität der Beugungsdaten verbessern kann. Großer Wellenlängenbereich: Es kann über einen großen Wellenlängenbereich betrieben werden und eignet sich für verschiedene Arten von Röntgenbeugungsexperimenten. Gute Stabilität: Durch die Verwendung von hochreinem Graphitmaterial verfügt es über eine gute Stabilität und eine lange Lebensdauer. Anwendungsgebiete: Materialwissenschaft: In der Materialwissenschaft werden Röntgendiffraktometer häufig zur Untersuchung der Kristallstruktur, der Phasenzusammensetzung und anderer Materialeigenschaften eingesetzt. Der Graphit-Kristallmonochromator als wichtige Komponente des Röntgendiffraktometers bietet wichtige technische Unterstützung für die materialwissenschaftliche Forschung. Physik: Im Bereich der Physik werden Röntgendiffraktometer auch zur Untersuchung der Mikrostruktur und der physikalischen Eigenschaften von Materie verwendet. Zusammenfassend lässt sich sagen, dass der in Röntgendiffraktometern verwendete Graphit-Kristallmonochromator ein effizientes und genaues Gerät zur Röntgenauswahl und -filterung ist und wichtige technische Unterstützung für Röntgenbeugungsexperimente bietet.

2025/03/18
LESEN SIE WEITER
Welche Art wissenschaftlicher Magie steckt in einer kleinen Plattform?

Der rotierende Probenhalter in einem Röntgendiffraktometer ist eine Schlüsselkomponente zur präzisen Einstellung und Fixierung der Probenposition. Die Probe kann sich in ihrer eigenen Ebene drehen, was bei Fehlern durch grobe Körner von Vorteil ist. Bei Proben mit Textur und Kristallographie gewährleistet der rotierende Probenhalter eine gute Reproduzierbarkeit der Beugungsintensität und eliminiert eine bevorzugte Orientierung. Funktionsprinzip des rotierenden Probenhalters: Beim Betrieb des Röntgendiffraktometers werden von der Röntgenquelle erzeugte hochenergetische Röntgenstrahlen auf die auf dem rotierenden Probentisch fixierte Probe gestrahlt. Aufgrund der spezifischen Kristallstruktur und Gitterparameter der Probe unterliegen die Röntgenstrahlen bei der Wechselwirkung mit der Probe Streuungs-, Absorptions- und Beugungsphänomenen, wobei Beugungsphänomene gemäß den Anforderungen der Bragg-Gleichung auftreten. Der rotierende Probenhalter kann je nach Einstellung in kleineren Winkeln rotieren, wodurch die Probe Röntgenstrahlung aus unterschiedlichen Winkeln erhält und Beugungsmuster in unterschiedlichen Winkeln erzeugt werden. Auf diese Weise kann der Detektor die Röntgenintensität nach der Probenbeugung messen und in ein elektrisches Signal umwandeln, das zur Datenverarbeitung an den Computer übertragen wird. Die Hauptfunktion des rotierenden Probenhalters ist: Rotationsmethode: β-Achse (Probenebene) Rotationsgeschwindigkeit: 1 ~ 60 U/min Kleine Schrittweite: 0,1º Betriebsmodus: Rotation mit konstanter Geschwindigkeit zum Abtasten der Probe (Schritt, kontinuierlich) Vorteile des rotierenden Probenhalters: Der rotierende Probenhalter kann die Genauigkeit der Beugungsdaten verbessern: Bei Proben mit unregelmäßiger Pulver- oder Partikelform tritt bei der konventionellen Pulverprobenvorbereitung häufig eine bevorzugte Orientierung auf, was zu Abweichungen in der Beugungsintensitätsverteilung führt und die Genauigkeit der Beugungsergebnisanalyse beeinträchtigt. Durch die Rotation des Probenträgers kann die Probe in einer bestimmten Form im geeigneten Raum bewegt werden, wodurch der Einfluss der bevorzugten Orientierung bis zu einem gewissen Grad eliminiert und so die Genauigkeit der Beugungsdaten verbessert wird. Der rotierende Probenhalter lässt sich an verschiedene Prüfanforderungen anpassen: Er ist an verschiedene Röntgenbeugungswinkelmessgeräte, wie z. B. Vertikalwinkelmessgeräte, kompakte Pulverbeugungsgeräte mit geringer Leistung usw., anpassbar und bietet so Komfort für unterschiedliche Prüfanforderungen. Durch die Anpassung von Parametern wie Geschwindigkeit und Lenkung kann der rotierende Probenhalter den Anforderungen verschiedener Proben und Prüfbedingungen gerecht werden. Der rotierende Probenhalter kann die Analysemöglichkeiten des Instruments erweitern: Es werden ständig neue Arten rotierender Probentische entwickelt und angewendet, wie beispielsweise einige Probentische für die elektrochemische In-situ-Röntgenbeugungsanalyse, mit denen die Veränderungen von Materialien in unterschiedlichen Umgebungen oder Bedingungen in Echtzeit überwacht und analysiert werden können, wodurch die Analysemöglichkeiten von Röntgenbeugungsgeräten erweitert werden. Zusammenfassend ist der rotierende Probenhalter im Röntgendiffraktometer von entscheidender Bedeutung für die genaue Gewinnung von Informationen zur Kristallstruktur von Substanzen. Der rotierende Probenhalter kann nicht nur die Genauigkeit der Beugungsdaten verbessern, sondern sich auch an verschiedene Testanforderungen anpassen und die analytischen Fähigkeiten des Instruments erweitern.

2025/03/14
LESEN SIE WEITER
Geheimnisvolle schwarze Technologie! Wie magisch ist das multifunktionale integrierte Messzubehör des Röntgendiffraktometers?

Im Röntgendiffraktometer ist das multifunktionale integrierte Messzubehör eine entscheidende Komponente, die die Funktionalität und Flexibilität des Geräts erheblich verbessert. Es wird zur Analyse von Filmen auf Platten, Blöcken und Substraten verwendet und ermöglicht Tests wie Kristallphasenerkennung, Orientierung, Textur, Spannung und In-Plane-Struktur dünner Filme. Grundübersicht des multifunktionalen integrierten Messzubehörs: Definition: Dies ist ein allgemeiner Begriff für eine Reihe zusätzlicher Geräte oder Module, die in Röntgendiffraktometern verwendet werden, um die Instrumentenfunktionen zu erweitern und die Messgenauigkeit und -effizienz zu verbessern. Zweck: Diese Aufsätze sollen es dem Röntgendiffraktometer ermöglichen, ein breiteres Spektrum experimenteller Anforderungen abzudecken und umfassendere und genauere Informationen zur Materialstruktur bereitzustellen. Die Funktionsmerkmale des multifunktionalen integrierten Messzubehörs: Führen Sie Polardiagrammtests mithilfe von Transmissions- oder Reflexionsmethoden durch. Belastungstests können entweder mit der Parallel-Neigungsmethode oder der Gleich-Neigungsmethode durchgeführt werden. Dünnschichtprüfung (Rotation der Probe in der Ebene). Technische Eigenschaften des multifunktionalen integrierten Messzubehörs: Hohe Präzision: Sie verwenden typischerweise fortschrittliche Sensortechnologie und Steuerungssysteme, um eine hohe Präzision und Wiederholbarkeit der Messungen zu gewährleisten. Automatisierung: Viele Anhänge unterstützen automatisierte Vorgänge und können nahtlos in den Röntgendiffraktometer-Host integriert werden, um Messungen mit einem Klick zu ermöglichen. Modulares Design: Ermöglicht Benutzern die Auswahl und Kombination verschiedener Zubehörmodule entsprechend ihren tatsächlichen Anforderungen. Anwendungsgebiete des multifunktionalen integrierten Messzubehörs: Weit verbreitet in Bereichen wie Materialwissenschaft, Physik, Chemie, Biologie und Geologie; Bewertung von Metallbaugruppenstrukturen wie beispielsweise gewalzten Platten; Bewertung der Keramikorientierung; Bewertung der Kristallprioritätsorientierung in Dünnschichtproben; Eigenspannungsprüfung verschiedener metallischer und keramischer Werkstoffe (Bewertung der Verschleißfestigkeit, Schnittfestigkeit etc.); Eigenspannungsprüfung von Mehrschichtfolien (Beurteilung von Folienablösungen etc.); Analyse von Oberflächenoxidationen und Nitridfilmen auf Hochtemperatur-Supraleitermaterialien wie dünnen Filmen und Metallplatten; Glas-Si, Analyse von Mehrschichtfilmen auf Metallsubstraten (magnetische Dünnfilme, Filme zur Härtung von Metalloberflächen usw.); Analyse von galvanischen Materialien wie makromolekularen Materialien, Papier und Linsen. Das multifunktionale integrierte Messzubehör im Röntgendiffraktometer ist der Schlüssel zur Verbesserung der Geräteleistung. Es erweitert nicht nur die Funktionalität des Geräts, sondern verbessert auch die Genauigkeit und Effizienz der Messung und bietet Forschern umfassendere und tiefergehende Methoden zur Materialanalyse. Mit der kontinuierlichen Weiterentwicklung der Technologie werden diese Zubehörteile auch weiterhin eine wichtige Rolle bei der Förderung der wissenschaftlichen Forschung in verwandten Bereichen spielen und weitere Durchbrüche erzielen.

2025/03/13
LESEN SIE WEITER
Erschließen Sie neue Höhen in der Materialforschung

Das Hochtemperaturzubehör eines Diffraktometers ist ein zusätzliches Gerät, das Röntgenbeugungsanalysen an Proben unter Hochtemperaturbedingungen durchführen kann. Es dient dem Verständnis der Veränderungen der Kristallstruktur von Proben während der Hochtemperaturerhitzung und der Veränderungen der gegenseitigen Auflösung verschiedener Substanzen während der Hochtemperaturerhitzung. Funktionsprinzip des Hochtemperaturzubehörs: Durch Methoden wie Widerstands-, Induktions- oder Strahlungserwärmung wird die Probe innerhalb eines festgelegten Temperaturbereichs erhitzt. Gleichzeitig ist das Gerät mit hochpräzisen Temperatursensoren und Steuerungssystemen ausgestattet, um die Temperatur der Probe in Echtzeit zu überwachen und anzupassen und so die Stabilität und Genauigkeit der Temperatur zu gewährleisten. Die Temperaturregelgenauigkeit kann ±0,5 °C oder sogar mehr erreichen. Um die Stabilität der Probe bei hohen Temperaturen zu gewährleisten und eine Reaktion mit dem Luftsauerstoff zu verhindern, benötigt Hochtemperaturzubehör üblicherweise ein Atmosphärenschutzsystem. Gängige Atmosphären umfassen Inertgase wie Argon, Stickstoff usw. Das Atmosphärenkontrollsystem kann Durchflussrate und Druck der Atmosphäre präzise regeln und so eine stabile Versuchsumgebung für die Probe schaffen. Die Hauptfunktionen des Hochtemperaturzubehörs sind: Die Echtzeitüberwachung von Phasenübergängen, chemischen Reaktionen, Kristallstrukturänderungen und anderen Prozessen in Hochtemperaturumgebungen ermöglicht es, Informationen über die Struktur und Eigenschaften von Substanzen bei unterschiedlichen Temperaturen zu gewinnen. Durch die Analyse von Position, Intensität und Form von Beugungspeaks können Kristallzellparameter, Kristallstruktur, Phasenzusammensetzung und weitere Informationen der Probe ermittelt und der Gehalt jeder Komponente präzise bestimmt werden. Untersuchen Sie Geschwindigkeit, Mechanismus und Diffusionsverhalten chemischer Reaktionen. Beobachten Sie beispielsweise die Strukturänderungen von Katalysatoren während Hochtemperaturreaktionen, verstehen Sie die Bildung und das Verschwinden ihrer aktiven Zentren und optimieren Sie deren Leistung. Anwendungsbereich des Hochtemperaturzubehörs: Dient zur Untersuchung von Phasenübergängen, der Entwicklung der Kristallstruktur und Leistungsänderungen von Hochtemperatur-Supraleitern, Metalllegierungen, Keramiken usw. bei unterschiedlichen Temperaturen und bildet die Grundlage für Materialdesign und -herstellung. Die Beobachtung von Stoffveränderungen während chemischer Reaktionen, wie z. B. die Untersuchung der Strukturveränderungen von Katalysatoren und der Entwicklung aktiver Zentren in Hochtemperaturkatalysereaktionen, kann zur Entwicklung effizienter Katalysatoren beitragen. Die Untersuchung der physikalischen Eigenschaften von Stoffen bei hohen Temperaturen, wie Magnetismus, elektronische Struktur und deren Beziehung zur Temperatur, ermöglicht die Erforschung neuer physikalischer Phänomene und Gesetzmäßigkeiten. Technische Parameter des Hochtemperaturzubehörs: Temperatureinstellung: Inertgasumgebung von Raumtemperatur bis 1200 ℃ Vakuumumgebung: hohe Temperatur von 1600 ℃ Genauigkeit der Temperaturregelung: ± 0,5 ℃ Fenstermaterial: Polyesterfolie Kühlmethode: deionisierte Wasserzirkulationskühlung Zusammenfassend ist das Hochtemperaturzubehör im Diffraktometer ein wichtiges Testwerkzeug, mit dem Röntgenbeugungsanalysen an Proben unter Hochtemperaturbedingungen durchgeführt werden können und das die Forschung in Bereichen wie Materialwissenschaft, Chemieingenieurwesen und Physik stark unterstützt.

2025/03/12
LESEN SIE WEITER
Die Geheimwaffe der Materialforschung

Der multifunktionale Probenhalter in einem Röntgendiffraktometer ist ein Gerät zum Platzieren und Fixieren von Proben mit mehreren Funktionen und Merkmalen. Er kann Spuren von Pulverproben sowie blattförmige, große, unregelmäßige Proben testen, die nicht geschnitten oder zu Pulver gemahlen werden können. Der multifunktionale Probenhalter zur Probenfixierung und -unterstützung: Der Probenhalter kann die Probe fest fixieren, wodurch sichergestellt wird, dass die Probe während der Röntgenbeugung stabil bleibt und verhindert wird, dass die Genauigkeit und Zuverlässigkeit der Beugungsdaten durch die Bewegung der Probe beeinträchtigt wird. Der multifunktionale Probenhalter mit Höhen- und Winkeleinstellung: Er verfügt über eine Funktion zur Einstellung von Höhe und Winkel und kann den Abstand und den relativen Winkel zwischen der Probe und der Röntgenröhre sowie dem Detektor flexibel entsprechend der Größe, Form und den Erkennungsanforderungen verschiedener Proben einstellen, um den besten Beugungseffekt zu erzielen. Die multifunktionale Rotationsfunktion des Probenhalters: Einige Probentische können gedreht werden, sodass die Probe aus verschiedenen Winkeln einer Röntgenbestrahlung ausgesetzt wird. Dadurch werden mehr Beugungsinformationen aus verschiedenen Winkeln gewonnen, was zu einer umfassenden Analyse der Kristallstruktur und -ausrichtung der Probe beiträgt. Die multifunktionale Probenhalteranpassung: Sie kann an verschiedene Arten von Proben angepasst werden, z. B. Feststoffe, Flüssigkeiten, Pulver usw. Durch den Austausch verschiedener Probenhalterungen oder Zubehörteile können die Testanforderungen verschiedener Proben erfüllt werden. Die multifunktionale Umgebungskontrolle des Probenhalters: Einige moderne Probenhalter sind außerdem mit Umgebungskontrollsystemen ausgestattet, mit denen Proben unter bestimmten Temperatur-, Feuchtigkeits-, Atmosphären- und anderen Bedingungen getestet werden können, um die Auswirkungen verschiedener Umgebungen auf Proben zu simulieren und so den Anwendungsbereich von Röntgendiffraktometern weiter zu erweitern. Der Multifunktionsprobenhalter im Röntgendiffraktometer ist ein leistungsstarkes, flexibles und vielseitiges Zusatzgerät, das für die Verbesserung der Genauigkeit und Effizienz von Röntgenbeugungsexperimenten von großer Bedeutung ist.

2025/03/11
LESEN SIE WEITER
Erschließen Sie eine neue Welt der Optik

Das Zubehör für parallele optische Filmmessungen ist eine optische Komponente, die verwendet wird, um die Signalintensität dünner Filme zu erhöhen und den Einfluss von Substratsignalen auf die Messergebnisse zu verringern. Wird normalerweise in optischen Experimenten oder Instrumenten verwendet, hauptsächlich zur Erzeugung paralleler Strahlen oder zur Durchführung optischer Messungen an Dünnschichtproben. Durch Erhöhen der Gitterlänge kann eine präzisere Steuerung und Filterung des Lichts erreicht werden. Wenn Licht durchdringt, kann die Gitterplatte mehr gestreute Linien herausfiltern, wodurch das durchgelassene Licht reiner und konzentrierter wird. Dadurch wird die Interferenz von gestreutem Licht auf das Dünnschichtsignal verringert und die Signalstärke der Dünnschicht selbst erhöht, wodurch die Genauigkeit und Zuverlässigkeit der Messung verbessert wird. 1. Hauptfunktion des parallelen optischen Filmmesszubehörs Verbesserung der Messgenauigkeit: Bei der Erkennung und Analyse dünner Filme, wie etwa der Messung der Filmdicke oder der Bestimmung optischer Konstanten, können parallele Lichtdünnfilmaufsätze den Einfluss von Substratsignalen wirksam reduzieren, sodass die Messergebnisse näher an den wahren Eigenschaften des dünnen Films liegen und dadurch die Messgenauigkeit und -präzision verbessert wird. Signalstärke verbessern: Hilft, die Intensität des vom Dünnfilm reflektierten oder übertragenen Lichtsignals zu erhöhen, was besonders bei einigen Dünnfilmproben mit schwächeren Signalen wichtig ist. Das verstärkte Signal kann vom Detektor deutlicher empfangen und erkannt werden, wodurch die Nachweisgrenze verringert und die Empfindlichkeit des Instruments zum Nachweis von Dünnfilmproben verbessert wird. Verbesserung der Bildqualität: Bei einigen Anwendungen, die eine bildgebende Beobachtung dünner Filme erfordern, wie z. B. bei der Beobachtung der Oberflächenmorphologie dünner Filme unter einem Mikroskop, können Dünnfilmaufsätze mit parallelem Licht Hintergrundrauschen und Unschärfe durch Streulicht reduzieren, wodurch das Bild des dünnen Films klarer und kontrastreicher wird und die detaillierte Struktur des dünnen Films leichter beobachtet und analysiert werden kann. 2. Hauptkomponenten des parallelen optischen Filmmesszubehörs Lichtquelle: Normalerweise werden Laser, LEDs oder andere monochromatische Lichtquellen verwendet. Kollimatorlinse: wandelt divergierende Lichtstrahlen in paralleles Licht um. Probenständer: dient zum Platzieren von Filmproben und ist in der Regel in Position und Winkel verstellbar. Detektor: dient zum Empfangen von gesendeten oder reflektierten Lichtsignalen zur Messung und Analyse. 3. Anwendungsgebiete des paralleloptischen Filmmesszubehörs Optische Forschung: dient der Untersuchung der optischen Eigenschaften dünner Filme, wie Interferenz, Beugung usw. Materialwissenschaft: Wird verwendet, um die Dicke und den Brechungsindex dünner Filme zu messen und Materialeigenschaften zu bewerten. Industrielle Prüfung: Wird zur Qualitätskontrolle und Prüfung bei der Filmproduktion verwendet. 4. Anleitung für das parallel-optische Filmmesszubehör Justieren Sie die Lichtquelle: Stellen Sie sicher, dass die Lichtquelle stabil ist und der Strahl gleichmäßig ist. Kollimierter Strahl: Passen Sie den Lichtstrahl durch eine Kollimationslinse an, um ihn parallel zu machen. Platzieren Sie die Probe: Platzieren Sie die Filmprobe auf dem Probentisch und passen Sie Position und Winkel an. Messung und Analyse: Verwenden Sie Detektoren, um Lichtsignale zu empfangen, Daten aufzuzeichnen und Analysen durchzuführen. 5. Vorsichtsmaßnahmen Stabilität der Lichtquelle: Stellen Sie die Stabilität der Lichtquelle sicher, um Messfehler zu vermeiden. Reinigung optischer Komponenten: Halten Sie die optischen Komponenten sauber, um zu vermeiden, dass Staub und Flecken die Messergebnisse beeinträchtigen. Probenvorbereitung: Stellen Sie sicher, dass die Filmprobe gleichmäßig und fehlerfrei ist, um genaue Messergebnisse zu erhalten. Zusammenfassend lässt sich sagen, dass das Zubehör für die parallele optische Filmmessung eine wichtige optische Komponente ist, die in vielen Bereichen eine entscheidende Rolle spielt und für die Förderung der wissenschaftlichen Forschung und des technologischen Fortschritts in verwandten Bereichen von großer Bedeutung ist.

2025/03/06
LESEN SIE WEITER
Präzise Temperaturregelung

Das Mittel- und Niedertemperaturzubehör eines Röntgendiffraktometers ist eine Schlüsselkomponente für die Röntgenbeugungsanalyse in Niedertemperaturumgebungen. Das Mittel- und Niedertemperaturzubehör wird häufig in der Forschung und Entwicklung in den Materialwissenschaften, der Physik, der Chemie und anderen Bereichen verwendet und eignet sich besonders für Szenarien, die eine Strukturanalyse von Materialien unter unterschiedlichen Temperaturbedingungen erfordern. Um die Änderungen in der Kristallstruktur während des Niedertemperaturkühlungsprozesses zu verstehen, sind im Folgenden die technischen Parameter des Mittel- und Niedertemperaturzubehörs aufgeführt: Vakuumumgebung: - 196 ~ 500 ℃ Genauigkeit der Temperaturregelung: ± 0,5 ℃ Kühlmethode: flüssiger Stickstoff (Verbrauch weniger als 4 l/h) Fenstermaterial: Polyesterfolie Kühlmethode: deionisierte Wasserzirkulationskühlung Kurz gesagt ist das Mittel- und Niedertemperaturzubehör eines Röntgendiffraktometers eine wichtige Gerätekomponente, die wissenschaftliche Forschung und Materialanalyse stark unterstützen kann. Das Mittel- und Niedertemperaturzubehör eines Diffraktometers ist eines der wichtigsten Werkzeuge auf dem Gebiet der Materialstrukturanalyse mit breiten Anwendungsaussichten und erheblichem Forschungswert. Das Mittel- und Niedertemperaturzubehör des Diffraktometers ist eine Schlüsselkomponente, um den normalen Betrieb und die genaue Messung des Instruments unter Niedertemperaturbedingungen sicherzustellen. Sein Design und seine Leistung wirken sich direkt auf die Genauigkeit und Zuverlässigkeit der Versuchsergebnisse aus. Bei der Auswahl und Anwendung des Mittel- und Niedertemperaturzubehörs sollten die Versuchsanforderungen, die Probeneigenschaften sowie die technischen Parameter und Leistungsmerkmale des Zubehörs vollständig berücksichtigt werden, um die besten Versuchsergebnisse sicherzustellen.

2025/03/05
LESEN SIE WEITER
Sind Sie immer noch besorgt über die Einschränkungen herkömmlicher Sterilisationsmethoden?

Der Röntgenstrahler erzeugt hochenergetische Röntgenstrahlen, um Zielobjekte oder biologisches Gewebe zu bestrahlen. Die Erzeugung von Röntgenstrahlen wird normalerweise erreicht, indem Elektronen beschleunigt werden, sodass sie mit Metallzielen (wie Wolfram, Kupfer usw.) kollidieren, wodurch Bremsstrahlung erzeugt und Röntgenstrahlen gebildet werden, die dann Zellen oder kleine Tiere bestrahlen. Röntgenstrahler werden für verschiedene Grundlagen- und angewandte Forschungen verwendet. In der Vergangenheit wurden Bestrahlungsgeräte für radioaktive Isotope verwendet, für die Proben zu einer Kernbestrahlungseinrichtung transportiert werden mussten. Heute können jedoch kleinere, sicherere, einfachere und kostengünstigere Röntgenstrahler in Laboren installiert werden, um Zellen bequem und schnell zu bestrahlen. Verschiedene Proben können direkt im Labor bestrahlt werden, ohne die Fruchtbarkeit oder Sicherheit zu beeinträchtigen. Der Röntgenstrahler ist bequem für Personal zu verwenden, das keine professionelle Röntgenschulung erhalten hat, und es fallen keine teuren Lizenzanträge oder Sicherheits- oder Strahlungsquellenwartungskosten an. Der Röntgenstrahler ist einfach zu bedienen, sicher, zuverlässig und kostengünstig und kann radioaktive Isotopenquellen ersetzen. 1. Die Hauptanwendungsbereiche von Röntgenbestrahlungsgeräten umfassen den medizinischen Bereich, den wissenschaftlichen Forschungsbereich usw. 2. Sicherheitsvorkehrungen für Röntgenbestrahlungsgeräte: Strahlenschutz: Die Bediener müssen Schutzkleidung tragen, um eine längere Belastung durch Röntgenstrahlen zu vermeiden. Wartung der Geräte: Überprüfen Sie die Geräte regelmäßig, um ihren normalen Betrieb sicherzustellen und Strahlungslecks zu verhindern. Dosiskontrolle: Kontrollieren Sie die Bestrahlungsdosis streng, um unnötige Schäden an der Probe oder dem menschlichen Körper zu vermeiden.

2025/02/28
LESEN SIE WEITER
Unterstützt durch Spitzentechnologie, führend beim neuen Trend der Industrietests!

Prinzip und Anwendung des tragbaren NDT-Röntgenschweißprüfgeräts: Die tragbare Röntgenschweißprüfmaschine NDT nutzt die akustischen, optischen, magnetischen und elektrischen Eigenschaften von Materialien, um das Vorhandensein von Defekten oder Unebenheiten im geprüften Objekt zu erkennen, ohne dessen Leistung zu beeinträchtigen oder zu beeinträchtigen. Sie liefert Informationen über Größe, Ort, Art und Menge der Defekte. Im Vergleich zur zerstörenden Prüfung weist die zerstörungsfreie Prüfung die folgenden Merkmale auf. Die erste ist zerstörungsfrei, da die Leistung des geprüften Objekts während der Prüfung nicht beeinträchtigt wird. Die zweite ist umfassend, da die Prüfung zerstörungsfrei erfolgt und eine 100 % umfassende Prüfung des geprüften Objekts erforderlich ist, die durch zerstörende Prüfung nicht erreicht werden kann. Die dritte ist umfassend, und zerstörende Prüfungen sind im Allgemeinen nur auf die Prüfung von Rohstoffen anwendbar, wie z. B. Zug-, Druck-, Biegeprüfungen usw., die im Maschinenbau häufig verwendet werden. Zerstörende Prüfungen werden an Herstellungsrohstoffen durchgeführt, und für Fertigprodukte und Gebrauchsgegenstände können zerstörende Prüfungen nicht durchgeführt werden, es sei denn, sie sind nicht für den weiteren Gebrauch bestimmt. Zerstörungsfreie Prüfungen hingegen beeinträchtigen die Leistung des geprüften Objekts nicht. Daher können nicht nur vollständige Prozesstests an der Herstellung von Rohstoffen, Zwischenprozessen und sogar Endprodukten durchgeführt werden, sondern auch Geräte im Einsatz getestet werden. Eigenschaften des tragbaren NDT-Röntgenschweißprüfgeräts: Der Röntgengenerator hat ein kleines Volumen, eine geerdete Anode und eine Zwangskühlung durch einen Ventilator. ◆ Leicht, einfach zu tragen und einfach zu bedienen; Arbeit und Ruhe im Verhältnis 1:1; Schönes Aussehen und vernünftige Struktur; ◆ Verzögerte Exposition, um die Sicherheit des Bedieners zu gewährleisten; Der Hauptzweck des tragbaren NDT-Röntgenschweißprüfgeräts: Der Hauptzweck der Geräte besteht darin, die Verarbeitungs- und Schweißqualität von Materialien und Komponenten wie Schiffsrümpfen, Rohrleitungen, Hochdruckbehältern, Kesseln, Flugzeugen, Fahrzeugen und Brücken in Industriezweigen wie der Landesverteidigung, dem Schiffbau, der Erdöl-, Chemie-, Maschinenbau, der Luft- und Raumfahrt und dem Bauwesen sowie innere Defekte und die inhärente Qualität verschiedener Leichtmetalle, Gummi, Keramik usw. zu überprüfen.

2025/02/27
LESEN SIE WEITER
Holen Sie sich den neuesten Preis? Wir werden so schnell wie möglich antworten (innerhalb von 12 Stunden)
This field is required
This field is required
Required and valid email address
This field is required
This field is required