Hintergrund

Nachrichten

Tongda Originally Battery Accessory: Ein Einblick in die Reaktionsmechanismen von Batterien

In der Forschung und Entwicklung von Lithium-Ionen-Batterien ist das Verständnis der dynamischen Veränderungen der Mikrostruktur von Elektrodenmaterialien während Lade- und Entladevorgängen von entscheidender Bedeutung. Herkömmliche Offline-Erkennungsmethoden können diese Veränderungen nicht in Echtzeit erfassen, während die Entwicklung von In-situ-Charakterisierungstechniken den Forschern ein leistungsstarkes Werkzeug bietet. Dandong Tongda Technology Co., Ltd. nutzt seine Expertise in der Röntgenbeugungstechnologie (XRD) und hat ein In-situ-Batteriezubehör für die Batterieforschung entwickelt, das ein effizientes Fenster zur Erforschung der Reaktionsprozesse in der „Black Box“ von Batterien bietet. Technisches Prinzip: Dynamische Überwachung mikroskaliger Veränderungen in Batteriematerialien Das zentrale Designziel des ursprünglichen Batteriezubehörs von Dandong Tongda besteht darin, die Entwicklung der Kristallstruktur von Elektrodenmaterialien mithilfe der Röntgenbeugungstechnologie (XRD) in Echtzeit zu überwachen, während die Batterie normal funktioniert (während des Ladens und Entladens). Dieses Zubehör muss typischerweise mit einem elektrochemischen Testsystem (wie dem LAND-Batterietestsystem) und einem Röntgendiffraktometer (wie dem Modell TD-3500 von Tongda Tech) zusammenarbeiten. Es bildet eine spezielle Batteriekammer, die es Röntgenstrahlen ermöglicht, die Elektrodenmaterialien der Batterie während des Betriebs zu durchdringen und zu prüfen. Der Schlüssel liegt in der Gestaltung von Fenstermaterialien (wie Berylliumfenstern) mit extrem geringer Röntgenabsorptionsrate auf den Batteriekomponenten, um eine effektive Einstrahlung und Emission der Röntgenstrahlen zu gewährleisten. Gleichzeitig integriert das Zubehör die notwendigen Elektroden, Isolierungen und Dichtungskomponenten, um normale elektrochemische Reaktionen zu gewährleisten und während des Tests eine hervorragende Abdichtung aufrechtzuerhalten. Schlüsselfunktionen und Anwendungswert Der Wert dieses In-situ-Batteriezubehörs liegt in seiner Fähigkeit, Forschern dabei zu helfen, eine Reihe mikroskopischer Veränderungen in Elektrodenmaterialien während Lade- und Entladevorgängen der Batterie intuitiv und dynamisch zu beobachten: Echtzeitbeobachtung von Phasenübergangsprozessen: Viele Elektrodenmaterialien durchlaufen während der Interkalation und Deinterkalation von Lithiumionen Phasenübergänge. In-situ-XRD kann die Bildung, das Verschwinden und die Transformation dieser Phasen in Echtzeit erfassen, was für das Verständnis der Reaktionsmechanismen der Batterie von entscheidender Bedeutung ist. Überwachung von Gitterparameteränderungen: Durch die genaue Verfolgung der Verschiebungen der XRD-Beugungsspitzen können subtile Änderungen der Gitterparameter berechnet werden, die die Ausdehnung und Kontraktion des Gitters widerspiegeln. Dies steht in engem Zusammenhang mit Batterieleistungskennzahlen wie Spannungsplattformen und Zykluslebensdauer. Mechanismen des Kapazitätsabfalls aufdecken: Kapazitätsabfall während des Batteriezyklus ist häufig auf strukturellen Abbau von Elektrodenmaterialien, Nebenreaktionen und andere Faktoren zurückzuführen. In-situ-Überwachung kann den elektrochemischen Leistungsabfall mit strukturellen Veränderungen korrelieren und so direkte Erkenntnisse zur Verbesserung von Batteriematerialien und zur Optimierung des Designs liefern. Beschleunigung der Entwicklung neuer Materialien: Zur Bewertung neuartiger Elektrodenmaterialien kann die In-situ-XRD-Technologie schnell wichtige Informationen zur strukturellen Stabilität und zu Reaktionswegen liefern und so den F&E-Prozess beschleunigen.

2025/09/03
LESEN SIE WEITER
Dandong Tongda XAFS-Spektrometer: Ein Werkzeug zur Materialstrukturanalyse für das Labor

Dandong Tongda XAFS-Spektrometer: Ein Werkzeug zur Materialstrukturanalyse für das Labor Präzise Analyse der atomaren Materialstruktur ohne Abhängigkeit von Synchrotronstrahlungsquellen. Die Röntgenabsorptionsfeinstrukturspektroskopie (XAFS) ist eine wichtige Technik zur Untersuchung der lokalen atomaren und elektronischen Strukturen von Materialien und findet breite Anwendung in der Katalyse, Energieforschung und Materialwissenschaft. Die konventionelle XAFS-Methode basiert hauptsächlich auf Synchrotronstrahlungsquellen. Dies bringt Herausforderungen mit sich, darunter eine begrenzte Strahlverfügbarkeit, komplexe Anwendungsverfahren und die Notwendigkeit, Proben zur Analyse zu großen wissenschaftlichen Einrichtungen zu transportieren. Die von Dandong Tongda Technology Co., Ltd. entwickelte Röntgenabsorptions-Feinstruktur zielt darauf ab, diese anspruchsvolle Analysefunktion in Standardlaborumgebungen zu integrieren. Kernvorteile und praktischer Wert Das Design dieses Instruments geht auf mehrere kritische Herausforderungen ein, denen sich Forscher gegenübersehen: Laborbasierte Alternative zur Synchrotronstrahlung: Eliminiert die traditionelle Abhängigkeit von Synchrotronstrahlungsquellen und ermöglicht es Forschern, routinemäßige XAFS-Tests effizient in ihren eigenen Laborumgebungen durchzuführen, wodurch die Forschungsproduktivität erheblich gesteigert wird. In-situ-Testfunktionen: Unterstützt die Integration verschiedener In-situ-Probenkammern (z. B. elektrochemisch, temperaturvariabel), wodurch die Echtzeitüberwachung dynamischer Änderungen der lokalen Atomstruktur von Materialien unter simulierten Betriebsbedingungen (wie katalytischen Reaktionen oder Lade-/Entladevorgängen von Batterien) ermöglicht wird, was wertvolle Einblicke in Reaktionsmechanismen liefert. Automatisierter Betrieb für verbesserte Effizienz: Ein Probenrevolver mit 18 Positionen ermöglicht den automatischen Probenwechsel und erleichtert so die kontinuierliche automatisierte Messung mehrerer Proben sowie den unbemannten Betrieb. Dadurch werden die Chargenprobenprüfung und erweiterte In-situ-Experimente optimiert. Breiter Anwendungsbereich Das TD-XAFS-Spektrometer findet Anwendung in zahlreichen Bereichen, in denen eine detaillierte Untersuchung lokaler Materialstrukturen erforderlich ist: Neue Energiematerialien: Analyse von Valenzzustandsänderungen und struktureller Stabilität in Elektrodenmaterialien von Lithium-Ionen-Batterien während Lade-/Entladevorgängen; Untersuchung von Koordinationsumgebungen an katalytisch aktiven Stellen in Brennstoffzellen. Katalysewissenschaft: Besonders geeignet für die Untersuchung präziser Koordinationsstrukturen von Nanokatalysatoren und Einzelatomkatalysatoren, der Eigenschaften aktiver Zentren und ihrer Wechselwirkungen mit Trägermaterialien, selbst bei geringen Metallbeladungen (<1%). Materialwissenschaft: Untersuchung ungeordneter Strukturen, amorpher Materialien, Oberflächen-/Grenzflächeneffekte und dynamischer Phasenübergangsprozesse. Umweltwissenschaften: Analyse der Valenzzustände und Koordinationsstrukturen von Schwermetallelementen in Umweltproben (z. B. Boden, Wasser), entscheidend für die Beurteilung von Toxizität und Mobilität. Biologische Makromoleküle: Untersuchung der elektronischen Strukturen und geometrischen Konfigurationen von metallischen aktiven Zentren in Metalloproteinen und Enzymen. Zusammenfassung Das TD-XAFS-Spektrometer von Dandong Tongda ist eine leistungsstarke Testplattform für den heimischen Tischgebrauch, die für Universitäten, Forschungseinrichtungen und Forschungs- und Entwicklungszentren von Unternehmen entwickelt wurde. Es integriert erfolgreich Synchrotron-Funktionen in konventionelle Labore und reduziert so die Zugangsbarriere zur XAFS-Technologie erheblich. Das Instrument bietet Forschern praktische, effiziente und flexible Werkzeuge für die mikroskopische Materialstrukturanalyse und stellt eine praktische Lösung für Wissenschaftler dar, die die mikroskopische Welt der Materie erforschen.

2025/08/29
LESEN SIE WEITER
Dandong Tongda Multifunktionaler Eigenspannungsanalysator

Der von Dandong Tongda Technology Co., Ltd. entwickelte multifunktionale Eigenspannungsanalysator ist auf schnelle und genaue Messungen im Labor und im Feld ausgelegt. Er basiert hauptsächlich auf dem Röntgenbeugungsprinzip und ermöglicht die zerstörungsfreie Prüfung des Eigenspannungszustands in Materialien. Vielseitige All-in-One-Analyse Dieser Analysator integriert mehrere Materialanalysefunktionen und verbessert so den Nutzen und die Effizienz der Ausrüstung erheblich: Restspannungsanalyse: Unterstützt verschiedene Messmodi wie Standard-同倾法 (Omega-Neigung), Standard-侧倾法 (Psi-Neigung) und Standard-摇摆法 (Schwingung) und ist in der Lage, Hauptspannungen und Scherspannungen für eine umfassende Bewertung des Spannungszustands zu bestimmen. Analyse des Restaustenits: Verwendet die Vier-Peak-Methode zur Prüfung des Restaustenits mit vollautomatischer Datenberechnung für schnelle Ergebnisse. Beugungsphasenanalyse: Wird zur Analyse von Kristallstrukturen, chemischen Zusammensetzungen und Verteilungen verwendet und hilft Forschern, tiefere Einblicke in die Materialzusammensetzung zu gewinnen. Korngrößenanalyse: Unterstützt die Bewertung der Korngröße vom Nanometer- bis zum Submikrometerbereich, besonders geeignet für feine Körner ≤200 nm. Technische Merkmale und Leistung Dieses Instrument verfügt über zahlreiche technische Merkmale, die Präzision, Stabilität und Benutzerfreundlichkeit gewährleisten: Hochpräzise Messung und Steuerung: Verwendet ein hochpräzises, vollständig geschlossenes Vektorantriebs-Servosystem, um Messgenauigkeit und Wiederholbarkeit zu gewährleisten. Effiziente Datenerfassung: Ausgestattet mit einem mehrkanaligen linearen Siliziumstreifen-Array-Detektor, der rauschfreie Leistung, hochintensive Messungen und schnelle Datenerfassung bietet, um die Erkennungseffizienz zu verbessern. Tragbares Design: Dank der leichten Konstruktion eignet es sich nicht nur für Laborumgebungen, sondern auch für schnelle Messungen vor Ort und passt sich an verschiedene Testszenarien an. Benutzerfreundliche Bedienung: Integriert Windows-Betriebssysteme oder Automatisierungsfunktionen, unterstützt Tests mit einem Klick und die Anzeige von Ergebnissen in Echtzeit und senkt so die Bedienbarriere. Modularität und Sicherheit: Das modular aufgebaute SPS-Steuerungssystem sorgt für einfache Bedienung und stabile Leistung. Die Niedrigleistungs-Röntgenanlage entspricht den geltenden Sicherheitsnormen und die Strahlungswerte liegen deutlich unter dem jährlichen Grenzwert für die öffentliche Strahlendosis. Breite Anwendungsfelder Der multifunktionale Eigenspannungsanalysator von Dandong Tongda hat ein breites Anwendungsspektrum und deckt nahezu alle Industriezweige und Forschungseinrichtungen ab, die eine Bewertung der mechanischen Materialeigenschaften erfordern: Qualitätskontrolle in der Fertigung: Wird verwendet, um während der Verarbeitung Eigenspannungen in gestanzten, gegossenen und gewalzten Teilen zu erkennen. Automobilindustrie: Testet Eigenspannungen in kritischen Komponenten wie Nockenwellen und Pleuelstangen, um Zuverlässigkeit und Haltbarkeit sicherzustellen. Luft- und Raumfahrt: Bewertet Arbeitslasten in kritischen Bereichen von Luft- und Raumfahrtmaterialien, um die Sicherheit zu beurteilen. Materialwissenschaftliche Forschung: Anwendbar auf verschiedene Metallmaterialien (z. B. Kohlenstoffstahl, legierter Stahl, Titanlegierungen, nickelbasierte Materialien), Glas und Verbundwerkstoffe zur Analyse von Restspannungen, Restaustenit, Phasen und Korngrößen. Der multifunktionale Eigenspannungsanalysator von Dandong Tongda Technology Co., Ltd. demonstriert durch die Integration mehrerer Analysefunktionen die technische Expertise des Unternehmens im Bereich der Materialprüfung. Dieses Gerät bietet Ingenieuren und Forschern Einblick in den Eigenspannungszustand von Materialien und hilft so, die Produktqualität an der Quelle zu kontrollieren, Prozessparameter zu optimieren und so die Produktzuverlässigkeit und -haltbarkeit zu verbessern.

2025/08/27
LESEN SIE WEITER
Enthüllung origineller Accessoires

Ursprünglich handelt es sich bei Batteriezubehör um experimentelle Geräte, die speziell für elektrochemische Tests entwickelt wurden und hauptsächlich zur In-situ-Charakterisierung von Batteriematerialien während Lade- und Entladevorgängen verwendet werden, was üblicherweise bei der Röntgenbeugung (XRD) der Fall ist. 1. Kernfunktionen und Anwendungsszenarien von Original-Batteriezubehör (1)Ursprünglicher Test: Durch die Echtzeitüberwachung von Materialphasenstrukturänderungen (wie Kristallstruktur und Phasenübergang) während des Ladens und Entladens von Batterien können Probenverunreinigungen oder Zustandsänderungen durch Batteriedemontage vermieden werden. Unterstützt mehrere elektrochemische Systeme, einschließlich Verbundwerkstoffe mit Kohlenstoff, Sauerstoff, Stickstoff, Schwefel, Metalleinbettungen usw. (2) Multimodale Kompatibilität: Röntgenbeugung (XRD): Wird zur Analyse der strukturellen Entwicklung von positiven/negativen Elektrodenmaterialien während Lade- und Entladevorgängen verwendet. 2. Struktureller Aufbau und technische Eigenschaften des ursprünglichen Batteriezubehörs (1) Schlüsselkomponenten: Untere Isolierabdeckung: normalerweise aus Aluminiumoxidkeramik oder Polytetrafluorethylen, enthält Kühlmittelströmungskanäle oder Widerstandsdraht-Installationsrohrleitungen und dient der Temperaturregelung. Obere leitfähige Abdeckung: Durch Schrauben mit der unteren isolierenden Abdeckung verbunden, um einen geschlossenen Raum zu bilden, mit einem Berylliumfenster (Durchmesser 15 mm, Dicke 0,1 mm) an der Oberseite zur Übertragung von Röntgenstrahlen. Elektrodensystem: Ursprünglich umfasst das Batteriezubehör eine untere Elektrode (mit einer Stützsäule) und eine Schmetterlingsfeder, die durch Druckfixierung elektrisch verbunden sind, was den Montageprozess vereinfacht. (2) Technologische Innovation: Formales Design: Im Vergleich zur herkömmlichen umgekehrten Methode erfordert die formale Struktur keine umgedrehte Montage, was die Bedienung im Handschuhfach erleichtert und die Ebenheit des Berylliumfensters und der Membran gewährleistet. Abdichtung und Temperaturregelung: Integrierte Kühlmittelzirkulationsleitung und Widerstandsdraht-Heizgerät, geeignet für einen Temperaturbereich von -400 °C bis 400 °C. 3. Technische Vorteile von Original-Batteriezubehör (1) Vereinfachte Bedienung: Reduzieren Sie Montageschritte, verkürzen Sie die Betriebszeit in Handschuhkästen und verbessern Sie die Effizienz. Die Schmetterlingsfeder fixiert die Elektrode ohne Drehen und Festziehen und vermeidet so Störungen der simulierten Batteriestruktur. (2) Leistungsverbesserung: Die hohe Röntgendurchlässigkeit (>90 %) der Berylliumfenster gewährleistet die Stärke des Detektionssignals. Der multifunktionale Probentisch unterstützt den automatischen Probenwechsel und eignet sich für Hochdurchsatztests. Insgesamt sind Originalbatteriezubehörteile wichtige Werkzeuge für die elektrochemische Forschung, da ihr Design den Montageprozess herkömmlicher Batteriesimulationsstrukturen optimiert und die Zuverlässigkeit und Anwendbarkeit von Originaltests verbessert.

2025/06/11
LESEN SIE WEITER
Ein Werkzeug zur Erforschung des Mikrokosmos!

Ein multifunktionaler Probentisch ist eine Experimentier- oder Testplattform mit mehreren Funktionsmodulen, die zum Transport, zur Manipulation und zum Testen verschiedener Probentypen (wie Materialien, biologische Proben, elektronische Komponenten usw.) dient. Er ist in der Regel flexibel konfigurierbar und skalierbar, um unterschiedlichen experimentellen Anforderungen gerecht zu werden. Er wird häufig in der wissenschaftlichen Forschung, bei industriellen Tests, in der Medizin und anderen Bereichen eingesetzt. 1. Kernfunktionen und Merkmale der multifunktionalen Probenbühne (1) Mehrdimensionale Anpassung des multifunktionalen Probentisches Bewegungssteuerung: Unterstützt präzise Bewegungen wie Translation, Rotation und Neigung der X-/Y-/Z-Achse und ist mit automatischem Scannen oder manueller Feinabstimmung kompatibel. Umweltsimulation: Es können Module wie Temperaturregelung (-196 °C bis mehrere tausend Grad), Feuchtigkeitskontrolle, Vakuum-/Atmosphärenumgebung (wie Inertgas, korrosives Gas) usw. integriert werden. Kraft-/elektrische/magnetische Belastung: Einige Modelle unterstützen die Anwendung mechanischer Kraft, Strom, Magnetfelder usw., um die Leistung von Proben unter extremen Bedingungen zu untersuchen. (2) Kompatibilität und Skalierbarkeit des multifunktionalen Probenständers Anpassung an mehrere Analyseinstrumente Durch den modularen Aufbau können Benutzer Funktionen entsprechend ihren Anforderungen hinzufügen, z. B. Heizstationen, Kühlstationen, Flüssigkeitsinfusionssysteme usw. (3) Hohe Präzision und Stabilität des multifunktionalen Probentisches Verschiebungsgenauigkeit auf Nanoebene, vibrationshemmendes Design, geeignet für Beobachtungen vor Ort oder Langzeitexperimente. Einige Modelle unterstützen die In-situ-Charakterisierung (z. B. die Echtzeitbeobachtung von Probenänderungen während Dehnungs-, Kompressions- und Erhitzungsprozessen). (4) Automatisierung und Intelligenz des multifunktionalen Probenständers Automatisierte Tests werden durch die Steuerung von Bewegungsbahnen und Umgebungsparametern über Software erreicht. Integrierte Sensoren und Datenerfassungssystem, Echtzeitaufzeichnung von Probenreaktionen (wie Verformung, Widerstandsänderungen usw.). 2. Typische Anwendungsszenarien des multifunktionalen Probentisches: (1) Materialwissenschaft des multifunktionalen Probenständers Untersuchen Sie die Leistung von Materialien in Umgebungen mit hohen/niedrigen Temperaturen, Belastungen und Korrosion. In-situ-SEM/TEM-Beobachtung von Materialverformungen, Phasenumwandlungen oder Kristallisationsprozessen. (2) Biomedizinischer multifunktionaler Probentisch Zellkultur- und Arzneimittelpermeationsexperimente erfordern Temperaturkontrolle, Feuchtigkeitskontrolle und eine Gasumgebung. Arbeiten Sie mit mikroskopischer Bildgebung zusammen, um die dynamischen Veränderungen lebender Proben zu beobachten. (3) Elektronik und Halbleiter für multifunktionale Probenständer Chip-Test: Bietet Funktionen wie Sondenpositionierung, Thermoschock und elektrische Leistungstests. Probenpositionierung und -verarbeitung in Fotolithografie- oder Beschichtungsprozessen. (4) Chemie-/Energieforschung am multifunktionalen Probenständer In-situ-Überwachung katalytischer Reaktionen (z. B. Oberflächenreaktionen unter Beleuchtungs- und Heizbedingungen). Prüfung der Batterieelektroden (Simulation der Ausdehnung/Kontraktion während Lade- und Entladevorgängen).

2025/06/05
LESEN SIE WEITER
Vielseitiger Messaufsatz für 99 %-Szenarien geeignet

Das multifunktionale integrierte Messzubehör des Röntgendiffraktometers (XRD) ist eine Schlüsselkomponente für die Durchführung von Multi-Szenen- und Multi-Skalen-Analysen. Durch den modularen Aufbau kann es die Anforderungen von Pulverbeugung, Kleinwinkelstreuung, Eigenspannungsanalyse, In-situ-Tests usw. erfüllen. Im Folgenden sind gängige multifunktionale integrierte Messzubehörteile und ihre Kernfunktionen aufgeführt: 1. Das multifunktionale integrierte Messzubehör ist ein Temperatur- und Umgebungskontrollzubehör (1) Funktion: Unterstützt Probentests bei hohen Temperaturen, niedrigen Temperaturen und kontrollierter Luftfeuchtigkeit und wird verwendet, um die Veränderungen der Kristallstruktur von Materialien unter unterschiedlichen Temperatur- oder Luftfeuchtigkeitsbedingungen zu untersuchen. (2) Merkmale: Temperaturbereich: von Raumtemperatur bis 1500 °C; Automatische Temperaturregelung und Feuchtigkeitsregulierung, geeignet für In-situ-Katalyse, Phasenwechselanalyse und andere Experimente. (3) Anwendung: Phasenübergang metallischer Werkstoffe, Analyse der Polymerkristallinität, Forschung zur thermischen Stabilität anorganischer Werkstoffe. 2. Automatischer Probengeber und Probentisch für multifunktionales integriertes Messzubehör (1) Funktion: Implementieren Sie automatisches Umschalten und präzises Positionieren mehrerer Proben, um die Testeffizienz zu verbessern. (2) Merkmale: Unterstützendes Zubehör wie Probenrotationstische und Mikrobeugungstische für die Richtungsprüfung komplexer Proben; Arbeiten Sie mit intelligenter Software zusammen, um Messparameter zu optimieren und Probenkonfigurationen automatisch zu identifizieren. (3) Anwendung: Prüfung von Chargenproben, Dünnschicht- oder Mikrobereichsanalyse. 3. Multifunktionales integriertes Messzubehör, geeignet für zweidimensionale Detektoren und schnelle eindimensionale Detektoren (1) Funktion: Unterstützt die mehrdimensionale Datenerfassung, um die Analysefähigkeit komplexer Proben zu verbessern. (2) Merkmale: Eindimensionaler Hochgeschwindigkeitsdetektor, geeignet für konventionelle Pulverbeugung; Zweidimensionaler Halbleiter-Array-Detektor, der zwischen nulldimensionalem, eindimensionalem oder zweidimensionalem Modus umschalten kann und so den Mikrobereich erweitert oder dynamische In-situ-Testmöglichkeiten bietet. (3) Anwendung: Analyse der 2D-Materialkristallorientierung, Überwachung der Reaktionsdynamik vor Ort. 4. Der multifunktionale integrierte Messaufsatz ist ein Eigenspannungs- und Mikrobereichsbeugungsaufsatz (1) Funktion: Führen Sie Richtungstests der Spannungsverteilung oder kleiner Bereiche auf der Oberfläche von Materialien durch. (2) Merkmale: Kombination des optischen θ/θ-Systems mit einer Mikrofokus-Röntgenquelle, um eine Mikrobeugung im Submillimeterbereich zu erreichen; zerstörungsfreie Messung, verwendet für die Spannungsanalyse von Metallwerkstücken und Halbleiterbauelementen. (3) Anwendung: Ermüdungsprüfung von Luft- und Raumfahrtkomponenten, Spannungscharakterisierung von Halbleiterdünnschichten. 5. Das multifunktionale integrierte Messzubehör ist ein intelligentes Kalibrierungs- und Automatisierungssteuerungszubehör (1) Funktion: Gewährleistung der Testgenauigkeit und -konsistenz durch Komponentenerkennung und automatische Kalibrierungstechnologie. (2) Funktionen: Automatische QR-Code-Erkennung, Konfiguration der Anhänge, softwaregesteuerte optimale Testbedingungen; Vollautomatisches Kalibrierungsprogramm zur Reduzierung menschlicher Bedienungsfehler. (3) Anwendung: Komplexes Umschalten von Anbaugeräten (z. B. Hochtemperatur-+AXS-Modus), anfängerfreundliche Bedienung. Das Zubehördesign moderner Röntgendiffraktometer legt Wert auf Modularität, Intelligenz und Automatisierung. Durch die Zusammenarbeit von Software und Hardware können Zubehörteile schnell gewechselt, Parameter optimiert und Daten standardisiert werden. Zukünftige Trends umfassen präzisere Mikroflächenanalysen, integrierte Lösungen für dynamische In-situ-Tests und intelligente, auf künstlicher Intelligenz basierende Zubehörmanagementsysteme.

2025/05/27
LESEN SIE WEITER
TDM-10 Desktop XRD Innovative Materialanalyse-Erfahrung

Das Desktop-Röntgendiffraktometer TDM-10 ist ein kompaktes und hochpräzises Phasenanalysegerät. Im Folgenden finden Sie eine detaillierte Produktvorstellung: 1. Kernfunktionen und Anwendungen des TDM-10 Desktop-Röntgendiffraktometers (1) Phasenanalyse Es eignet sich für die qualitative und quantitative Analyse von Pulver-, Feststoff- und pastenartigen Materialien sowie Dünnschichtproben und kann die Kristallstruktur, Phasenzusammensetzung und Kristallinität in den Proben identifizieren. (2) Kristallstrukturanalyse Damit können Korngröße, Kristallorientierung, makroskopische/mikroskopische Spannungen und strukturelle Eigenschaften von Materialien gemessen werden. (3) Industrielle und Forschungsanwendungen Weit verbreitet in Bereichen wie Geologie, Materialwissenschaften, Chemie, Biologie, Medizin und Nuklearindustrie, geeignet für schnelle Labortests und Lehrvorführungen. 2. Technische Eigenschaften des TDM-10 Desktop-Röntgendiffraktometers (1) Kompaktes Design und effiziente Leistung Kleine Größe, geringes Gewicht, geringer Stromverbrauch, einfach zu bedienen, geeignet für Desktop-Umgebungen. Ausgestattet mit einem Hochfrequenz- und Hochspannungsnetzteil kann die Leistung 1600 W erreichen (siehe Modell TDM-20), wodurch Röntgenstabilität gewährleistet wird. (2) Hochpräzise Messung Die Messgenauigkeit der Beugungsspitzenposition erreicht 0,001° mit ausgezeichneter Winkelwiederholbarkeit und erfüllt damit die Anforderungen hochpräziser Analysen. Unter Anwendung der Prinzipien der Debye-Scherrer-Geometrie und des Braggschen Gesetzes wird das Kristallreflexionssignal durch konische Oberflächenbeugung aufgezeichnet, wodurch eine genaue Phasenidentifikation erreicht wird. (3) Intelligente Steuerung und Datenverarbeitung Computergesteuerte Datenerfassung, die die Echtzeit-Datenerfassung und -verarbeitung unter Windows-Systemen mit einer intuitiven Bedienoberfläche unterstützt. Kann mit Array-Detektoren (bezogen auf die Hochleistungsdetektortechnologie von TDM-20) gepaart werden, um die Erkennungseffizienz und -empfindlichkeit zu verbessern. 3. Anwendungsszenarien des TDM-10 Desktop-Röntgendiffraktometers (1) Forschungsgebiet Universitäten und Forschungsinstitute werden für die Materialforschung und -entwicklung, die Kristallstrukturanalyse und die Charakterisierung von Nanomaterialien genutzt. (2) Industrielle Anwendungen Identifizierung von Mineralien, Analyse der Arzneimittelzusammensetzung, Tests zur Lebensmittelsicherheit (z. B. Screening auf Kristallverunreinigungen) usw. (3) Lehrdemonstration Einfach zu bedienendes Desktop-Gerät, geeignet für den experimentellen Unterricht von Studenten, das die grundlegende Theorie und praktische Anwendung der Phasenanalyse abdeckt. 4. Technische Parameter des TDM-10 Desktop-Röntgendiffraktometers (1) Messgenauigkeit: Beugungsspitzenpositionsgenauigkeit von 0,001 ° (2) Steuerungsmethode: Computersteuerung (Windows-System) (3) Stromversorgung: Niedrigstrom-Design, Hochfrequenz-Hochspannungsversorgung (4) Detektor: Unterstützt Array-Detektoren oder Proportional-Detektoren (siehe TDM-20-Zubehör) (5) Probenständer: Kann mit einem rotierenden Probenständer oder einem automatischen Probenwechsler kombiniert werden (optionales Zubehör) 5. Produktvorteile des TDM-10 Desktop-Röntgendiffraktometers (1) Hohe Kosteneffizienz: Inländische Geräte weisen eine hervorragende Leistung auf und sind viel günstiger als importierte Geräte, sodass sie sich für Labore mit begrenztem Budget eignen. (2) Schnelle Erkennung: Optimieren Sie den Kalibrierungsprozess, verkürzen Sie die Testzeit und verbessern Sie die experimentelle Effizienz. (3) Skalierbarkeit: Unterstützt mehrere Zubehörteile (wie Niedertemperaturkühlsysteme, In-situ-Batteriezubehör usw.), die auf spezielle Szenarioanalysen erweitert werden können. 6. Verwandte Serien und Vergleich des TDM-10 Desktop-Röntgendiffraktometers Modell TDM-20: TDM-20 ist eine verbesserte Version von TDM-10 mit höherer Leistung (1600 W), neuen Hochleistungs-Array-Detektoren, Unterstützung für automatische Probenwechsler und anderem Zubehör, geeignet für komplexere industrielle und wissenschaftliche Forschungsanforderungen. Andere Modelle: Die TD-Serie von Dandong Tongda umfasst auch hochauflösende Beugungsinstrumente wie TD-3500 und TD-3700 sowie Kristallanalysatoren der TDF-Serie, die den Bedarf an mehrdimensionalen Analysen abdecken. Das Tisch-Röntgendiffraktometer TDM-10 hat sich aufgrund seines kompakten Designs, seiner hochpräzisen Messung und seiner intelligenten Bedienung zum bevorzugten Gerät für die Phasenanalyse im Labor entwickelt. Es bietet vielfältige Anwendungsszenarien und eignet sich insbesondere für die wissenschaftliche Forschung und industrielle Umgebungen, die eine schnelle und genaue Detektion erfordern. Bei Bedarf an einer höheren Konfiguration kann das TDM-20 oder andere Modelle der gleichen Serie in Betracht gezogen werden.

2025/05/26
LESEN SIE WEITER
Das „KI-Mikroskop“ der mikroskopischen Welt

Ein Röntgenbestrahlungsgerät ist ein wissenschaftliches Forschungsgerät, das biologische Proben, Materialien oder kleine Tiere mit Röntgenstrahlen bestrahlt und in Bereichen wie Biologie, Medizin und Materialwissenschaft weit verbreitet ist. 1. Kernfunktionen und technische Grundlagen von Röntgenbestrahlungsgeräten (1) Funktionale Positionierung Biologische Forschung: Wird für DNA-Schäden, Zellmutagenese, Induktion der Stammzelldifferenzierung, Tumormechanismusforschung, Immunologie- und Gentherapieexperimente usw. verwendet. Medizinische Anwendungen: Strahlendesinfektion, Verarbeitung von Blutprodukten, Analyse der Apoptose von Tumorzellen, Vorbehandlung für Organtransplantationen usw. Material- und Umweltwissenschaften: Modifikation von Nanomaterialien, Strahlenquarantäne für Lebensmittel, Analyse von Bodenschadstoffen usw. (2) Technische Grundsätze Durch die Beschleunigung von Elektronen mit hoher Spannung, die auf Metallziele treffen, werden Röntgenstrahlen erzeugt. Nach der Optimierung durch Filter, Strahlbegrenzungsvorrichtungen usw. wird die Probe bestrahlt, um durch präzise Steuerung der Dosisleistung, der Bestrahlungszeit und der Reichweite einen gezielten Eingriff zu erreichen. 2. Wichtige technische Parameter von Röntgenbestrahlungsgeräten (1) Strahlungsverhalten Röhrenspannung: 30–225 kV (je nach Modell unterschiedlich). Dosisleistung: 0,1–16 Gy/Minute, ermöglicht präzise und stufenlose Einstellung. Dosisgleichmäßigkeit: ≥ 95 % (branchenführendes Niveau). Abstrahlwinkel und Abdeckungsbereich: Der maximale Abstrahlwinkel beträgt 40 Grad und der Abdeckungsdurchmesser beträgt bis zu 30 cm. (2) Betriebs- und Sicherheitskonzept Intelligente Steuerung: Touchscreen-Bedienoberfläche, Datenexportfunktion (kompatibel mit Excel). Sicherheitsschutz: Bleiabschirmgehäuse, Umgebungsdosis<20 μ R/h (5cm away from equipment), multiple interlocks and fault alarms. Kühlsystem: Die Closed-Loop-Kühltechnologie verlängert die Lebensdauer der Röntgenröhren (bis zu 2000 Stunden). (3) Anwendbare Probenarten Zellen, Gewebeorgane, Bakterien, Mäuse, Ratten usw. unterstützen die Bestrahlung von Kleintieren im wachen oder betäubten Zustand. 3.Typische Produkte und Hersteller von Röntgenbestrahlungsgeräten Inländischer Vertreter: Dandong Tongda Technology Co., Ltd Vorteile: Durch die Lokalisierung werden die Beschaffungskosten gesenkt, die Abläufe vereinfacht (ohne dass komplexe Röntgenkenntnisse erforderlich sind) und die nationalen Sicherheitsstandards eingehalten. 4. Erweiterung der Anwendungsgebiete für Röntgenbestrahlungsgeräte (1) Biologie und Medizin Zellforschung: Induktion von Genmutationen, Zellzyklusregulation, Signaltransduktionsanalyse. Tumorforschung: Bestrahlung von Tumorzellmodellen zur Erforschung von Apoptosemechanismen oder Strahlenempfindlichkeit. Präklinische Studien: Ganzkörperbestrahlung von Kleintieren (z. B. Mäusen) zur Erforschung des blutbildenden Systems, der Immunantwort usw. (2) Material- und Umweltwissenschaften Nanomaterialmodifikation: Veränderung der Kristallstruktur oder der Oberflächeneigenschaften von Materialien durch Bestrahlung. Lebensmittelquarantäne: Zerstörungsfreie Erkennung von Fremdkörpern, Konservierungsstoffrückständen oder mikrobieller Inaktivierung. Entsorgung radioaktiver Abfälle: Unterstützung bei der Analyse der Verteilung radioaktiver Materialien, um eine sichere Entsorgung zu gewährleisten. (3) Landwirtschaft und Viehzucht Mutationszüchtung: Bestrahlung von Pflanzensamen oder Insekten, um Genmutationen zu beschleunigen und nach überlegenen Eigenschaften zu suchen. 5. Entwicklungstrends und Herausforderungen von Röntgenbestrahlungsgeräten (1) Technische Upgrade-Richtung Intelligenz: Kombination von KI-Algorithmen zur Optimierung der Dosisverteilung und des Versuchsdesigns. Sicherheit: Reduzieren Sie das Austreten von Strahlung in die Umwelt und verbessern Sie die Schutzstandards. Multifunktionale Integration: beispielsweise die Integration von CT-Bildgebungs- und Bestrahlungsfunktionen, um eine Integration der „Erkennungsverarbeitung“ zu erreichen. (2) Herausforderungen für die Branche Eine hochpräzise Dosiskontrolle und -stabilität erfordern kontinuierliche Optimierung. Um die Unterschiede in der Strahlenempfindlichkeit biologischer Proben zu belegen, sind weitere Basisdaten erforderlich. Röntgenbestrahlungsgeräte sind ein unverzichtbares Werkzeug in der wissenschaftlichen Forschung und Industrie. Die von Dandong Tongda Technology Co., Ltd. hergestellten Röntgenbestrahlungsgeräte bieten ein ausgewogenes Verhältnis zwischen Leistung und Kosten und finden breite Anwendung in vielen Bereichen. Zukünftig wird sich ihr Anwendungsbereich durch technologische Weiterentwicklungen auf innovative Bereiche wie die Präzisionsmedizin und die Forschung und Entwicklung neuer Materialien erweitern.

2025/05/23
LESEN SIE WEITER
Die iterative Revolution der Kristallanalysatoren findet statt!

1. Röntgenkristallanalysator der TDF-Serie Funktion und Anwendung: Diese Geräteserie wird hauptsächlich zur Untersuchung der inneren Mikrostruktur von Materialien verwendet und eignet sich für die Einzelkristallorientierung, Defektprüfung, Bestimmung von Gitterparametern, Eigenspannungsanalyse, Platten-/Stabstrukturforschung, Analyse unbekannter Materialstrukturen und Einzelkristallversetzungsanalyse. Technische Merkmale: Als groß angelegtes Analyseinstrument integriert die TDF-Serie hochpräzise Röntgenbeugungstechnologie, die eine gründliche Analyse von Mikrostrukturen ermöglicht und Forschung und Qualitätskontrolle in Bereichen wie Materialwissenschaft, Halbleiterherstellung und Kristallverarbeitung unterstützt. Der Röntgenkristallanalysator der TDF-Serie verfügt über eine vertikale Rohrhülse und vier Fenster können gleichzeitig verwendet werden. Der Röntgenkristallanalysator der TDF-Serie verwendet importierte SPS-Steuerungstechnologie mit hoher Regelgenauigkeit und guter Entstörungsleistung, wodurch ein zuverlässiger Betrieb des Systems gewährleistet wird. Die SPS steuert den Hochspannungsschalter und das Anheben und hat die Funktion, die Röntgenröhre automatisch zu trainieren, wodurch die Lebensdauer der Röntgenröhre und des Instruments effektiv verlängert wird. 2. Röntgenkristallorientierer Funktion und Anwendung: Mithilfe des Prinzips der Röntgenbeugung kann der Schnittwinkel natürlicher oder künstlicher Einkristalle (z. B. piezoelektrischer Kristalle, optischer Kristalle, Laserkristalle, Halbleiterkristalle) schnell und genau bestimmt werden. In Kombination mit einer Schneidemaschine ist ein gerichtetes Schneiden möglich. Weit verbreitet in der Forschung, Verarbeitung und Herstellung kristalliner Materialien. Technische Vorteile: Es kann die herkömmliche Bestrahlungstechnologie mit radioaktiven Isotopen ersetzen und hochpräzise Richtungsanalysen direkt im Labor durchführen, wodurch die Effizienz und Genauigkeit der Kristallverarbeitung verbessert wird.

2025/05/22
LESEN SIE WEITER
TDM-20 ist da!

Das Desktop-Röntgendiffraktometer TDM-20 ist ein kompaktes Desktop-Gerät, das hauptsächlich für die Materialphasenanalyse und Kristallstrukturforschung verwendet wird. 1. Die Kernfunktionen des TDM-20 Desktop-Röntgendiffraktometers Phasenanalyse von TDM-20: TDM-20 kann qualitative/quantitative Analysen an polykristallinen Proben wie Pulvern, Feststoffen und Pastenmaterialien durchführen. Kristallstrukturanalyse von TDM-20: Basierend auf dem Prinzip der Röntgenbeugung unterstützt TDM-20 die Analyse von Kristallstrukturen von Metallproben, Mineralien, Verbindungen usw. 2. Technische Eigenschaften des Desktop-Röntgendiffraktometers TDM-20 Die hohe Leistung und Performance des TDM-20: Durch die Verwendung einer Hochfrequenz-Hochspannungsstromversorgung wird die Leistung auf 1600 W erhöht. Ausgestattet mit neuen Hochgeschwindigkeits-Array-Detektoren oder Proportionaldetektoren zur Verbesserung der Effizienz und Genauigkeit der Datenerfassung. Bequeme Bedienung des TDM-20: Das Gerät ist klein und leicht und eignet sich für kompakte Laborräume. Es unterstützt schnelle Kalibrierung und Prüfung mit einfacher Schaltungssteuerung und einfacher Installation und Fehlerbehebung. Die Genauigkeit und Stabilität von TDM-20: Die Winkelwiederholgenauigkeit beträgt bis zu 0,0001 ° und die Linearität des Beugungswinkels im gesamten Spektrum beträgt ± 0,01 °. Skalierbarkeit von TDM-20: TDM-20 kann mit einem 6-stelligen automatischen Probenwechsler, einem rotierenden Probentisch, einem Niedertemperatur-Kühlsystem und In-situ-Zubehör für hohe/mittlere Niedertemperaturen ausgestattet werden, um unterschiedlichen Testanforderungen gerecht zu werden. 3. Anwendungsszenarien des TDM-20 Desktop-Röntgendiffraktometers Zu den Forschungsfeldern des TDM-20 gehören die Charakterisierung von Kristallstrukturen und die Analyse von Phasenübergängen in den Materialwissenschaften, der Geologie und der pharmazeutischen Forschung. Industrielle Anwendungen von TDM-20: Bewertung der Arzneimittelkonsistenz in der Pharmaindustrie, Identifizierung von Mineralien, Analyse petrochemischer Katalysatoren, Tests zur Lebensmittelsicherheit (z. B. Bestimmung der Kristallzusammensetzung). Ausbildung und Landesverteidigung von TDM-20: Schnelle Phasenidentifikation in universitären Lehrexperimenten und der Entwicklung von Materialien zur Landesverteidigung. 4. Hersteller und Zubehör von TDM-20 Hersteller: Dandong Tongda Technology Co., Ltd. Optionales Zubehör: eindimensionaler Array-Detektor, Proportionaldetektor, 6-stelliger automatischer Probenwechsler, rotierender Probentisch, Graphit-Kristallmonochromator usw. Insgesamt ist TDM-20 mit seiner hohen Leistung, hohen Präzision und kompakten Bauweise zu einem effizienten Werkzeug für die Phasenanalyse im Labor geworden und wird in der wissenschaftlichen Forschung, der Industrie und in der Lehre häufig eingesetzt.

2025/05/14
LESEN SIE WEITER
Holen Sie sich den neuesten Preis? Wir werden so schnell wie möglich antworten (innerhalb von 12 Stunden)
This field is required
This field is required
Required and valid email address
This field is required
This field is required