- Zuhause
- >
- Nachrichten
- >
Nachrichten
Das Zubehör für mittlere und niedrige Temperaturen dient dazu, die Änderungen in der Kristallstruktur während des Niedertemperatur-Kühlprozesses zu verstehen.
Das Zubehör zur parallelen optischen Filmmessung vergrößert die Länge der Gitterplatte, um mehr Streulinien herauszufiltern. Dies trägt dazu bei, den Einfluss des Substratsignals auf die Ergebnisse zu verringern und die Signalintensität des Films zu verbessern.
Der Röntgenbestrahlungsapparat kann hochenergetische Röntgenstrahlen erzeugen, um Zellen oder kleine Tiere zu bestrahlen. Wird für verschiedene Grundlagen- und angewandte Forschungen verwendet. Im Laufe der Geschichte wurden Bestrahlungsapparate für radioaktive Isotope verwendet, für die Proben zu einer Kernbestrahlungseinrichtung transportiert werden mussten. Heute können in Laboren kleinere, sicherere, einfachere und kostengünstigere Röntgenbestrahlungsgeräte installiert werden, um Zellen bequem und schnell zu bestrahlen.
Hochtemperaturzubehör dient dazu, die Änderungen in der Kristallstruktur von Proben während der Hochtemperaturerhitzung sowie die Änderungen bei der gegenseitigen Auflösung verschiedener Substanzen während der Hochtemperaturerhitzung zu verstehen.
Das Röntgenabsorptions-Feinstrukturspektrometer (XAFS) ist ein leistungsfähiges Werkzeug zum Studium der lokalen atomaren oder elektronischen Struktur von Materialien und wird häufig in Bereichen wie Katalyse, Energie und Nanotechnologie eingesetzt.
Der Röntgenkristallanalysator der TDF-Serie ist ein groß angelegtes Analysegerät zur Untersuchung der inneren Mikrostruktur von Substanzen. Es wird hauptsächlich zur Einkristallorientierung, Defektprüfung, Bestimmung von Gitterparametern, Bestimmung von Restspannungen, Untersuchung der Struktur von Platten und Stäben, Untersuchung der Struktur unbekannter Substanzen und Einkristallversetzungen verwendet.
Das Hochleistungs-Röntgendiffraktometer TDM-20 (Tisch-XRD) wird hauptsächlich zur Phasenanalyse von Pulvern, Feststoffen und ähnlichen pastösen Materialien verwendet. Das Prinzip der Röntgenbeugung kann zur qualitativen oder quantitativen Analyse, zur Kristallstrukturanalyse und für andere polykristalline Materialien wie Pulverproben und Metallproben verwendet werden. Es wird häufig in Branchen wie Industrie, Landwirtschaft, Landesverteidigung, Pharmazeutika, Mineralien, Lebensmittelsicherheit, Erdöl, Bildung und wissenschaftlicher Forschung eingesetzt.
Röntgendiffraktometer werden hauptsächlich für die qualitative und quantitative Phasenanalyse, Kristallstrukturanalyse, Materialstrukturanalyse, Kristallorientierungsanalyse, Bestimmung makroskopischer oder mikroskopischer Spannung, Bestimmung der Korngröße, Bestimmung der Kristallinität usw. von Pulver-, Block- oder Filmproben verwendet. Es wird von Dandong Tongda Technology Co., Ltd. hergestellt und verwendet eine importierte Siemens-SPS-Steuerung, wodurch das Röntgendiffraktometer TD-3500 die Eigenschaften hoher Genauigkeit, hoher Präzision, guter Stabilität, langer Lebensdauer, einfacher Aufrüstung, einfacher Bedienung und Intelligenz aufweist und sich flexibel an Testanalysen und Forschung in verschiedenen Branchen anpassen lässt!
Das hochauflösende Röntgendiffraktometer der TD-3700-Serie ist ein neues Mitglied der TD-Serie und mit einer Vielzahl von Hochleistungsdetektoren wie Hochgeschwindigkeits-Eindimensional-Array-Detektoren, Zweidimensional-Detektoren, SDD-Detektoren usw. ausgestattet. Es vereint schnelle Analyse, komfortable Bedienung und Benutzersicherheit. Die modulare Hardwarearchitektur und das angepasste Softwaresystem ergeben eine perfekte Kombination, die die Ausfallrate extrem niedrig, die Entstörungsleistung gut und einen langfristig stabilen Betrieb der Hochspannungsversorgung gewährleistet.
Das TD-5000-Röntgen-Einkristalldiffraktometer wird hauptsächlich verwendet, um die dreidimensionale räumliche Struktur und Elektronenwolkendichte von kristallinen Substanzen wie anorganischen, organischen und Metallkomplexen zu bestimmen und die Struktur von Spezialmaterialien wie Zwillingskristallen, nichtkommensurablen Kristallen, Quasikristallen usw. zu analysieren. Bestimmen Sie den genauen dreidimensionalen Raum (einschließlich Bindungslänge, Bindungswinkel, Konfiguration, Konformation und sogar Bindungselektronendichte) neuer zusammengesetzter (kristalliner) Moleküle und die tatsächliche Anordnung der Moleküle im Gitter. Es kann Informationen zu den Kristallzellparametern, der Raumgruppe, der kristallinen Molekülstruktur, intermolekularen Wasserstoffbrücken und schwachen Wechselwirkungen sowie Strukturinformationen wie Molekülkonfiguration und -konformation liefern. Es wird häufig in der analytischen Forschung in der chemischen Kristallographie, Molekularbiologie, Pharmakologie, Mineralogie und Materialwissenschaft verwendet.