
- Zuhause
- >
- Nachrichten
- >
Nachrichten
1. Funktion des Einkristall-Diffraktometers: Das Röntgen-Einkristall-Diffraktometer TD-5000 wird hauptsächlich verwendet, um die dreidimensionale räumliche Struktur und Elektronenwolkendichte kristalliner Substanzen wie anorganischer, organischer und Metallkomplexe zu bestimmen und die Struktur spezieller Materialien wie Zwillingskristalle, nicht kommensurable Kristalle, Quasikristalle usw. zu analysieren. Bestimmen Sie den genauen dreidimensionalen Raum (einschließlich Bindungslänge, Bindungswinkel, Konfiguration, Konformation und sogar Bindungselektronendichte) neuer zusammengesetzter (kristalliner) Moleküle und die tatsächliche Anordnung der Moleküle im Gitter; das Röntgen-Einkristall-Diffraktometer kann Informationen zu den Kristallzellparametern, der Raumgruppe, der kristallinen Molekülstruktur, intermolekularen Wasserstoffbrücken und schwachen Wechselwirkungen sowie strukturellen Informationen wie der Molekülkonfiguration und -konformation liefern. Das Röntgen-Einkristall-Diffraktometer wird häufig in der analytischen Forschung in der chemischen Kristallographie, Molekularbiologie, Pharmakologie, Mineralogie und Materialwissenschaft verwendet. Das Röntgen-Einkristall-Diffraktometer ist ein Hightech-Produkt, das vom chinesischen Ministerium für Wissenschaft und Technologie im Rahmen des Nationalen Projekts zur Entwicklung bedeutender wissenschaftlicher Instrumente und Geräte finanziert und von Dandong Tongda Technology Co., Ltd. geleitet wird und die Lücke in der Entwicklung und Produktion von Einkristall-Diffraktometern in China schließt. 2. Eigenschaften des Einkristall-Diffraktometers: Die gesamte Maschine verfügt über eine speicherprogrammierbare Steuerungstechnologie (SPS). Sie ist einfach zu bedienen und verfügt über ein Ein-Klick-Sammelsystem. Modulares Design, Plug-and-Play-Zubehör, keine Kalibrierung erforderlich; Online-Überwachung in Echtzeit über Touchscreen, Anzeige des Instrumentenstatus; Hochleistungs-Röntgengenerator mit stabiler und zuverlässiger Leistung; Elektronische Türverriegelung, doppelter Schutz. 3. Genauigkeit des Einkristall-Diffraktometers: 2 θ Winkelwiederholgenauigkeit: 0,0001 °; Minimaler Schrittwinkel: 0,0001 ° Temperaturregelbereich: 100 K – 300 K; Regelgenauigkeit: ± 0,3 K 4. Winkelmessgerät für Einkristalldiffraktometer: Die Verwendung der Technik der vier konzentrischen Kreise stellt sicher, dass der Mittelpunkt des Winkelmessgeräts unabhängig von der Drehung unverändert bleibt. Dadurch werden die genauesten und vollständigsten Daten erzielt. Vier konzentrische Kreise sind eine notwendige Voraussetzung für das Scannen mit einem konventionellen Einkristall-Diffraktometer. 5. Hochgeschwindigkeits-Zweidimensionaldetektor, der in einem Röntgen-Einkristall-Diffraktometer verwendet wird: Der Detektor kombiniert die Schlüsseltechnologien Einzelphotonenzählung und Mixed-Pixel-Technologie, um höchste Datenqualität bei geringem Stromverbrauch und geringer Kühlung zu erzielen. Er findet Anwendung in verschiedenen Bereichen wie Synchrotronstrahlung und konventionellen Laborlichtquellen und eliminiert effektiv Störungen durch Ausleserauschen und Dunkelstrom. Die Mixed-Pixel-Technologie kann Röntgenstrahlen direkt erfassen, das Signal leichter unterscheiden und effizient hochwertige Daten liefern. 6. Im Röntgen-Einkristall-Diffraktometer verwendete Niedertemperaturausrüstung: Die mit Niedertemperaturgeräten gesammelten Daten liefern optimalere Ergebnisse. Mithilfe von Niedertemperaturgeräten können günstigere Bedingungen geschaffen werden, um unerwünschten Kristallen optimale Ergebnisse zu ermöglichen und idealen Kristallen optimalere Ergebnisse zu ermöglichen. Temperaturregelbereich: 100 K bis 300 K; Regelgenauigkeit: ± 0,3 K; Flüssigstickstoffverbrauch: 1,1 bis 2 Liter/Stunde; 7. Optionales Zubehör, Mehrschichtfilm-Fokussierlinse: Leistung der Röntgenröhre: 30 W oder 50 W usw.; Divergenz: 0,5–1 mrad; Röntgenröhren-Zielmaterial: Mo/Cu-Ziel; Brennfleck: 0,5–2 mm.
Das Röntgenabsorptions-Feinstrukturspektrum (XAFS) ist ein leistungsfähiges Werkzeug zum Studium der lokalen atomaren oder elektronischen Struktur von Materialien und wird häufig in gängigen Bereichen wie Katalyse, Energie und Nanotechnologie eingesetzt. Das Prinzip des Röntgenabsorptions-Feinstrukturspektrums (XAFS): Das Röntgenabsorptions-Feinstrukturspektrum bezeichnet hochauflösende Spektren nahe den charakteristischen Kanten der Elektronen im Atomkern, die Röntgenstrahlen absorbieren. Entspricht die Energie der Röntgenstrahlen der Anregungsenergie der Elektronen in der inneren Schale des gemessenen Elements, werden diese stark absorbiert, was zu einer Absorptionsgrenze (oder Absorptionskante) führt. In der Nähe der Absorptionskante weist der Absorptionskoeffizient der Röntgenstrahlen aufgrund von Mehrfachstreuung und anderen Gründen oszillierende Phänomene, die sogenannte Feinstruktur, auf. 2. Hauptvorteile des Röntgenabsorptions-Feinstrukturspektrums (XAFS): (1) Das Produkt mit dem höchsten Lichtstrom, mit einem Photonenfluss von über 1.000.000 Photonen/Sekunde/eV und einer spektralen Effizienz, die um ein Vielfaches höher ist als bei anderen Produkten; Erzielung einer Datenqualität, die der von Synchrotronstrahlung entspricht (2) Ausgezeichnete Stabilität, die monochromatische Lichtintensitätsstabilität der Lichtquelle ist besser als 0,1% und die wiederholte Energiedrift beträgt weniger als 50 meV (3) Eine Nachweisgrenze von 1 %, ein hoher Lichtstrom, eine hervorragende Optimierung des optischen Pfads und eine hervorragende Stabilität der Lichtquelle gewährleisten, dass auch dann noch qualitativ hochwertige EXAFS-Daten gewonnen werden können, wenn der gemessene Elementgehalt über 1 % liegt. 3. Anwendungsgebiete von XAFS: Industrielle Katalyse, Energiespeichermaterialien, Nanomaterialien, Umwelttoxikologie, qualitative Analyse, Schwerelementanalyse usw. 4. Hauptfunktionen von XAFS: (1) Nahbereichsordnung: EXAFS basiert auf Nahbereichswechselwirkungen und nicht auf Fernbereichsordnung. XAFS kann zur Untersuchung der Struktur ungeordneter Systeme wie amorpher, flüssiger, geschmolzener und katalysatoraktiver Zentren verwendet werden. (2) Elementspezifität: Mit der Fluoreszenzmethode können Elementproben mit Konzentrationen von nur einem Millionstel gemessen werden. Durch Anpassung der einfallenden Röntgenenergie können die benachbarten Strukturen von Atomen verschiedener Elemente in derselben Verbindung untersucht werden. (3) Polarisationseigenschaften: Mit polarisierten Röntgenstrahlen können atomare Bindungswinkel und Oberflächenstrukturen in orientierten Proben gemessen werden. Das Röntgenabsorptions-Feinstrukturspektrum ist mit seinen einzigartigen Prinzipien, bedeutenden Eigenschaften und breiten Anwendungsfeldern zu einem unverzichtbaren und wichtigen Werkzeug in vielen Bereichen wie der Materialwissenschaft, der katalytischen Chemie und der Energieforschung geworden und bietet eine starke Unterstützung für die eingehende Erforschung von Materialmikrostrukturen und elektronischen Zuständen.
Der in Röntgendiffraktometern verwendete automatische Probenwechsler ist ein Gerät zum automatisierten Probenwechsel, das die Effizienz und Genauigkeit von Röntgenbeugungsexperimenten verbessern soll. Angetrieben von einem importierten Schrittmotor und gesteuert von einer importierten speicherprogrammierbaren Steuerung (SPS) von Siemens ist ein manueller Probenwechsel nicht erforderlich. Das System misst Proben kontinuierlich und speichert die Daten automatisch. Für eine kontinuierliche Messung können mehrere Proben gleichzeitig geladen werden. Die Hauptkomponenten eines automatischen Probenwechslers sind: Probentransfermechanismus: umfasst normalerweise ein Förderband, eine elastische Druckplatte und einen Antriebsmotor, der für den sequentiellen Transfer der Testprobenplatten zur Entnahmeposition verantwortlich ist. Mechanismus zum Austauschen der Proben: Er besteht im Allgemeinen aus Klemmkomponenten, Antriebskomponenten und einem Drehtisch und kann die Probenplatte automatisch zwischen der Aufnahmeposition des Förderbands und der Probenbühne des Beugungsinstruments austauschen. Sensormodul: z. B. ein fotoelektrisches Sensormodul und ein Fotowiderstandssensormodul, das zum Erkennen der Position der Probe und des Betriebsstatus des Diffraktometers verwendet wird, um das Schaltungsmodul zu steuern und entsprechende Steueraktionen auszuführen. Steuerkreismodul: Verbinden und steuern Sie die Zusammenarbeit der oben genannten Mechanismen und Module, um einen genauen und stabilen Betrieb des automatischen Probenwechselprozesses sicherzustellen. Stromversorgungsmodul: Bietet Stromversorgungsunterstützung für das gesamte automatische Probenwechselgerät. 2. Funktionsprinzip des automatischen Probenwechslers: Nachdem das Diffraktometer die Prüfung der aktuellen Probe abgeschlossen hat, erkennt das Sensormodul die Zustandsänderung des Diffraktometer-Verschlusslichts und überträgt das Signal an das Steuerschaltungsmodul. Nach dem Empfang des Signals aktiviert das Steuerschaltungsmodul den Probenaustauschmechanismus, um ihn zur Aufnahmeposition des Förderbands und zum Probentisch des Beugungsinstruments zu bewegen, und klemmt die Probenplatten jeweils an den beiden Positionen durch die Klemmteile fest. Anschließend tauscht der Probenaustauschmechanismus die Positionen der beiden Probenplatten, um den Probenaustauschvorgang abzuschließen. Anschließend startet das Förderband und transportiert die nächste Probentafel zur Aufnahmeposition, wo auf den nächsten Probenwechsel gewartet wird. 3. Vorteile und Eigenschaften automatischer Probenwechsler: • Verbessern Sie die Testeffizienz: Es kann Proben während des Testvorgangs des Beugungsinstruments automatisch und ohne manuelles Eingreifen austauschen, wodurch der Testzyklus erheblich verkürzt und die Arbeitseffizienz verbessert wird. • Reduzieren Sie menschliche Fehler: Vermeiden Sie Bedienungsfehler und Irrtümer, die beim manuellen Ersetzen von Proben auftreten können, und verbessern Sie die Genauigkeit und Zuverlässigkeit der Testergebnisse. • Instrumentenschutz: Reduziert die Möglichkeit eines Instrumentenausfalls durch häufiges manuelles Öffnen und Schließen der Diffraktometertür und verlängert die Lebensdauer des Diffraktometers. • Geeignet zum Testen einer großen Anzahl von Proben: Es kann mehrere Proben laden, um den Anforderungen des kontinuierlichen Testens einer großen Anzahl von Proben gerecht zu werden, und eignet sich für die Hochdurchsatzerkennung in Bereichen wie wissenschaftlicher Forschung und Produktion. Zusammenfassend lässt sich sagen, dass der in Röntgenbeugungsinstrumenten verwendete automatische Probenwechsler eine effiziente und präzise automatisierte Ausrüstung ist, die viele Annehmlichkeiten und Vorteile für Röntgenbeugungsexperimente mit sich bringt und zur Verbesserung der experimentellen Effizienz und Qualität beiträgt.
Der in Röntgendiffraktometern verwendete Graphit-Kristallmonochromator ist eine Schlüsselkomponente zur Auswahl bestimmter Wellenlängen von Röntgenstrahlen und zur Entfernung unerwünschter Strahlung wie Kβ-Linien und fluoreszierender Röntgenstrahlung. Der Graphit-Kristallmonochromator ist eine vor dem Röntgendetektor installierte Komponente, die die durch den Empfangsspalt tretenden Röntgenstrahlen monochromatisiert und nur die charakteristischen Kα-Röntgenstrahlen im Röntgenspektrum erkennt. Durch den Einsatz dieses Geräts können kontinuierliche Röntgenstrahlen, charakteristische Kβ-Röntgenstrahlen und fluoreszierende Röntgenstrahlen vollständig eliminiert werden, was eine Röntgenbeugungsanalyse mit hohem Signal-Rausch-Verhältnis ermöglicht. Wenn Röntgenröhren mit Kupfertargets in Verbindung mit entsprechenden Monochromatoren verwendet werden, können von Mn-, Fe-, Co- und Ni-basierten Proben erzeugte fluoreszierende Röntgenstrahlen eliminiert werden, wodurch diese für die Analyse verschiedener Proben geeignet werden. Funktionsprinzip: Bragg-Beugung: Nach dem Braggschen Gesetz tritt Beugung auf, wenn Röntgenstrahlen in einem bestimmten Winkel auf einen Kristall treffen und 2dsin θ = n λ (wobei d der Netzebenenabstand des Kristalls, θ der Einfallswinkel, λ die Wellenlänge der Röntgenstrahlung und n eine Ganzzahl ist) ist. Dieses Prinzip wird genutzt, um die Ausrichtung des Kristalls so anzupassen, dass nur Röntgenstrahlen, die bestimmte Bedingungen erfüllen, hindurchtreten können. Dadurch wird die Auswahl der Röntgenwellenlängen erreicht. Energieauflösung: Aufgrund des Interplanarabstands und der strukturellen Eigenschaften von Graphitkristallen können Röntgenstrahlen unterschiedlicher Energie effektiv unterschieden werden. Ein Graphit-Kristallmonochromator mit hoher Energieauflösung kann unerwünschte Strahlung weiter reduzieren und die Qualität der Beugungsdaten verbessern. Strukturelle Merkmale: Gebogene Form: Graphit-Monochromatoren mit gekrümmtem Kristall haben typischerweise eine gekrümmte Form, die die Fokussierung der Röntgenstrahlen und die Verbesserung der Beugungseffizienz unterstützt. Gleichzeitig trägt die gekrümmte Form dazu bei, die Belastung des Kristalls zu reduzieren und seine Stabilität und Lebensdauer zu verbessern. Hochreiner Graphit: Graphit-Monochromatoren mit gekrümmtem Kristall bestehen normalerweise aus hochreinem Graphitmaterial, um eine gute Beugungsleistung und Stabilität zu gewährleisten. Hohe Beugungseffizienz: Es verfügt über eine hohe Beugungseffizienz, die Röntgenstrahlen der gewünschten Wellenlänge effektiv auswählen und so die Qualität der Beugungsdaten verbessern kann. Großer Wellenlängenbereich: Es kann über einen großen Wellenlängenbereich betrieben werden und eignet sich für verschiedene Arten von Röntgenbeugungsexperimenten. Gute Stabilität: Durch die Verwendung von hochreinem Graphitmaterial verfügt es über eine gute Stabilität und eine lange Lebensdauer. Anwendungsgebiete: Materialwissenschaft: In der Materialwissenschaft werden Röntgendiffraktometer häufig zur Untersuchung der Kristallstruktur, der Phasenzusammensetzung und anderer Materialeigenschaften eingesetzt. Der Graphit-Kristallmonochromator als wichtige Komponente des Röntgendiffraktometers bietet wichtige technische Unterstützung für die materialwissenschaftliche Forschung. Physik: Im Bereich der Physik werden Röntgendiffraktometer auch zur Untersuchung der Mikrostruktur und der physikalischen Eigenschaften von Materie verwendet. Zusammenfassend lässt sich sagen, dass der in Röntgendiffraktometern verwendete Graphit-Kristallmonochromator ein effizientes und genaues Gerät zur Röntgenauswahl und -filterung ist und wichtige technische Unterstützung für Röntgenbeugungsexperimente bietet.
Der rotierende Probenhalter in einem Röntgendiffraktometer ist eine Schlüsselkomponente zur präzisen Einstellung und Fixierung der Probenposition. Die Probe kann sich in ihrer eigenen Ebene drehen, was bei Fehlern durch grobe Körner von Vorteil ist. Bei Proben mit Textur und Kristallographie gewährleistet der rotierende Probenhalter eine gute Reproduzierbarkeit der Beugungsintensität und eliminiert eine bevorzugte Orientierung. Funktionsprinzip des rotierenden Probenhalters: Beim Betrieb des Röntgendiffraktometers werden von der Röntgenquelle erzeugte hochenergetische Röntgenstrahlen auf die auf dem rotierenden Probentisch fixierte Probe gestrahlt. Aufgrund der spezifischen Kristallstruktur und Gitterparameter der Probe unterliegen die Röntgenstrahlen bei der Wechselwirkung mit der Probe Streuungs-, Absorptions- und Beugungsphänomenen, wobei Beugungsphänomene gemäß den Anforderungen der Bragg-Gleichung auftreten. Der rotierende Probenhalter kann je nach Einstellung in kleineren Winkeln rotieren, wodurch die Probe Röntgenstrahlung aus unterschiedlichen Winkeln erhält und Beugungsmuster in unterschiedlichen Winkeln erzeugt werden. Auf diese Weise kann der Detektor die Röntgenintensität nach der Probenbeugung messen und in ein elektrisches Signal umwandeln, das zur Datenverarbeitung an den Computer übertragen wird. Die Hauptfunktion des rotierenden Probenhalters ist: Rotationsmethode: β-Achse (Probenebene) Rotationsgeschwindigkeit: 1 ~ 60 U/min Kleine Schrittweite: 0,1º Betriebsmodus: Rotation mit konstanter Geschwindigkeit zum Abtasten der Probe (Schritt, kontinuierlich) Vorteile des rotierenden Probenhalters: Der rotierende Probenhalter kann die Genauigkeit der Beugungsdaten verbessern: Bei Proben mit unregelmäßiger Pulver- oder Partikelform tritt bei der konventionellen Pulverprobenvorbereitung häufig eine bevorzugte Orientierung auf, was zu Abweichungen in der Beugungsintensitätsverteilung führt und die Genauigkeit der Beugungsergebnisanalyse beeinträchtigt. Durch die Rotation des Probenträgers kann die Probe in einer bestimmten Form im geeigneten Raum bewegt werden, wodurch der Einfluss der bevorzugten Orientierung bis zu einem gewissen Grad eliminiert und so die Genauigkeit der Beugungsdaten verbessert wird. Der rotierende Probenhalter lässt sich an verschiedene Prüfanforderungen anpassen: Er ist an verschiedene Röntgenbeugungswinkelmessgeräte, wie z. B. Vertikalwinkelmessgeräte, kompakte Pulverbeugungsgeräte mit geringer Leistung usw., anpassbar und bietet so Komfort für unterschiedliche Prüfanforderungen. Durch die Anpassung von Parametern wie Geschwindigkeit und Lenkung kann der rotierende Probenhalter den Anforderungen verschiedener Proben und Prüfbedingungen gerecht werden. Der rotierende Probenhalter kann die Analysemöglichkeiten des Instruments erweitern: Es werden ständig neue Arten rotierender Probentische entwickelt und angewendet, wie beispielsweise einige Probentische für die elektrochemische In-situ-Röntgenbeugungsanalyse, mit denen die Veränderungen von Materialien in unterschiedlichen Umgebungen oder Bedingungen in Echtzeit überwacht und analysiert werden können, wodurch die Analysemöglichkeiten von Röntgenbeugungsgeräten erweitert werden. Zusammenfassend ist der rotierende Probenhalter im Röntgendiffraktometer von entscheidender Bedeutung für die genaue Gewinnung von Informationen zur Kristallstruktur von Substanzen. Der rotierende Probenhalter kann nicht nur die Genauigkeit der Beugungsdaten verbessern, sondern sich auch an verschiedene Testanforderungen anpassen und die analytischen Fähigkeiten des Instruments erweitern.
Im Röntgendiffraktometer ist das multifunktionale integrierte Messzubehör eine entscheidende Komponente, die die Funktionalität und Flexibilität des Geräts erheblich verbessert. Es wird zur Analyse von Filmen auf Platten, Blöcken und Substraten verwendet und ermöglicht Tests wie Kristallphasenerkennung, Orientierung, Textur, Spannung und In-Plane-Struktur dünner Filme. Grundübersicht des multifunktionalen integrierten Messzubehörs: Definition: Dies ist ein allgemeiner Begriff für eine Reihe zusätzlicher Geräte oder Module, die in Röntgendiffraktometern verwendet werden, um die Instrumentenfunktionen zu erweitern und die Messgenauigkeit und -effizienz zu verbessern. Zweck: Diese Aufsätze sollen es dem Röntgendiffraktometer ermöglichen, ein breiteres Spektrum experimenteller Anforderungen abzudecken und umfassendere und genauere Informationen zur Materialstruktur bereitzustellen. Die Funktionsmerkmale des multifunktionalen integrierten Messzubehörs: Führen Sie Polardiagrammtests mithilfe von Transmissions- oder Reflexionsmethoden durch. Belastungstests können entweder mit der Parallel-Neigungsmethode oder der Gleich-Neigungsmethode durchgeführt werden. Dünnschichtprüfung (Rotation der Probe in der Ebene). Technische Eigenschaften des multifunktionalen integrierten Messzubehörs: Hohe Präzision: Sie verwenden typischerweise fortschrittliche Sensortechnologie und Steuerungssysteme, um eine hohe Präzision und Wiederholbarkeit der Messungen zu gewährleisten. Automatisierung: Viele Anhänge unterstützen automatisierte Vorgänge und können nahtlos in den Röntgendiffraktometer-Host integriert werden, um Messungen mit einem Klick zu ermöglichen. Modulares Design: Ermöglicht Benutzern die Auswahl und Kombination verschiedener Zubehörmodule entsprechend ihren tatsächlichen Anforderungen. Anwendungsgebiete des multifunktionalen integrierten Messzubehörs: Weit verbreitet in Bereichen wie Materialwissenschaft, Physik, Chemie, Biologie und Geologie; Bewertung von Metallbaugruppenstrukturen wie beispielsweise gewalzten Platten; Bewertung der Keramikorientierung; Bewertung der Kristallprioritätsorientierung in Dünnschichtproben; Eigenspannungsprüfung verschiedener metallischer und keramischer Werkstoffe (Bewertung der Verschleißfestigkeit, Schnittfestigkeit etc.); Eigenspannungsprüfung von Mehrschichtfolien (Beurteilung von Folienablösungen etc.); Analyse von Oberflächenoxidationen und Nitridfilmen auf Hochtemperatur-Supraleitermaterialien wie dünnen Filmen und Metallplatten; Glas-Si, Analyse von Mehrschichtfilmen auf Metallsubstraten (magnetische Dünnfilme, Filme zur Härtung von Metalloberflächen usw.); Analyse von galvanischen Materialien wie makromolekularen Materialien, Papier und Linsen. Das multifunktionale integrierte Messzubehör im Röntgendiffraktometer ist der Schlüssel zur Verbesserung der Geräteleistung. Es erweitert nicht nur die Funktionalität des Geräts, sondern verbessert auch die Genauigkeit und Effizienz der Messung und bietet Forschern umfassendere und tiefergehende Methoden zur Materialanalyse. Mit der kontinuierlichen Weiterentwicklung der Technologie werden diese Zubehörteile auch weiterhin eine wichtige Rolle bei der Förderung der wissenschaftlichen Forschung in verwandten Bereichen spielen und weitere Durchbrüche erzielen.
Das Hochtemperaturzubehör eines Diffraktometers ist ein zusätzliches Gerät, das Röntgenbeugungsanalysen an Proben unter Hochtemperaturbedingungen durchführen kann. Es dient dem Verständnis der Veränderungen der Kristallstruktur von Proben während der Hochtemperaturerhitzung und der Veränderungen der gegenseitigen Auflösung verschiedener Substanzen während der Hochtemperaturerhitzung. Funktionsprinzip des Hochtemperaturzubehörs: Durch Methoden wie Widerstands-, Induktions- oder Strahlungserwärmung wird die Probe innerhalb eines festgelegten Temperaturbereichs erhitzt. Gleichzeitig ist das Gerät mit hochpräzisen Temperatursensoren und Steuerungssystemen ausgestattet, um die Temperatur der Probe in Echtzeit zu überwachen und anzupassen und so die Stabilität und Genauigkeit der Temperatur zu gewährleisten. Die Temperaturregelgenauigkeit kann ±0,5 °C oder sogar mehr erreichen. Um die Stabilität der Probe bei hohen Temperaturen zu gewährleisten und eine Reaktion mit dem Luftsauerstoff zu verhindern, benötigt Hochtemperaturzubehör üblicherweise ein Atmosphärenschutzsystem. Gängige Atmosphären umfassen Inertgase wie Argon, Stickstoff usw. Das Atmosphärenkontrollsystem kann Durchflussrate und Druck der Atmosphäre präzise regeln und so eine stabile Versuchsumgebung für die Probe schaffen. Die Hauptfunktionen des Hochtemperaturzubehörs sind: Die Echtzeitüberwachung von Phasenübergängen, chemischen Reaktionen, Kristallstrukturänderungen und anderen Prozessen in Hochtemperaturumgebungen ermöglicht es, Informationen über die Struktur und Eigenschaften von Substanzen bei unterschiedlichen Temperaturen zu gewinnen. Durch die Analyse von Position, Intensität und Form von Beugungspeaks können Kristallzellparameter, Kristallstruktur, Phasenzusammensetzung und weitere Informationen der Probe ermittelt und der Gehalt jeder Komponente präzise bestimmt werden. Untersuchen Sie Geschwindigkeit, Mechanismus und Diffusionsverhalten chemischer Reaktionen. Beobachten Sie beispielsweise die Strukturänderungen von Katalysatoren während Hochtemperaturreaktionen, verstehen Sie die Bildung und das Verschwinden ihrer aktiven Zentren und optimieren Sie deren Leistung. Anwendungsbereich des Hochtemperaturzubehörs: Dient zur Untersuchung von Phasenübergängen, der Entwicklung der Kristallstruktur und Leistungsänderungen von Hochtemperatur-Supraleitern, Metalllegierungen, Keramiken usw. bei unterschiedlichen Temperaturen und bildet die Grundlage für Materialdesign und -herstellung. Die Beobachtung von Stoffveränderungen während chemischer Reaktionen, wie z. B. die Untersuchung der Strukturveränderungen von Katalysatoren und der Entwicklung aktiver Zentren in Hochtemperaturkatalysereaktionen, kann zur Entwicklung effizienter Katalysatoren beitragen. Die Untersuchung der physikalischen Eigenschaften von Stoffen bei hohen Temperaturen, wie Magnetismus, elektronische Struktur und deren Beziehung zur Temperatur, ermöglicht die Erforschung neuer physikalischer Phänomene und Gesetzmäßigkeiten. Technische Parameter des Hochtemperaturzubehörs: Temperatureinstellung: Inertgasumgebung von Raumtemperatur bis 1200 ℃ Vakuumumgebung: hohe Temperatur von 1600 ℃ Genauigkeit der Temperaturregelung: ± 0,5 ℃ Fenstermaterial: Polyesterfolie Kühlmethode: deionisierte Wasserzirkulationskühlung Zusammenfassend ist das Hochtemperaturzubehör im Diffraktometer ein wichtiges Testwerkzeug, mit dem Röntgenbeugungsanalysen an Proben unter Hochtemperaturbedingungen durchgeführt werden können und das die Forschung in Bereichen wie Materialwissenschaft, Chemieingenieurwesen und Physik stark unterstützt.
Der multifunktionale Probenhalter in einem Röntgendiffraktometer ist ein Gerät zum Platzieren und Fixieren von Proben mit mehreren Funktionen und Merkmalen. Er kann Spuren von Pulverproben sowie blattförmige, große, unregelmäßige Proben testen, die nicht geschnitten oder zu Pulver gemahlen werden können. Der multifunktionale Probenhalter zur Probenfixierung und -unterstützung: Der Probenhalter kann die Probe fest fixieren, wodurch sichergestellt wird, dass die Probe während der Röntgenbeugung stabil bleibt und verhindert wird, dass die Genauigkeit und Zuverlässigkeit der Beugungsdaten durch die Bewegung der Probe beeinträchtigt wird. Der multifunktionale Probenhalter mit Höhen- und Winkeleinstellung: Er verfügt über eine Funktion zur Einstellung von Höhe und Winkel und kann den Abstand und den relativen Winkel zwischen der Probe und der Röntgenröhre sowie dem Detektor flexibel entsprechend der Größe, Form und den Erkennungsanforderungen verschiedener Proben einstellen, um den besten Beugungseffekt zu erzielen. Die multifunktionale Rotationsfunktion des Probenhalters: Einige Probentische können gedreht werden, sodass die Probe aus verschiedenen Winkeln einer Röntgenbestrahlung ausgesetzt wird. Dadurch werden mehr Beugungsinformationen aus verschiedenen Winkeln gewonnen, was zu einer umfassenden Analyse der Kristallstruktur und -ausrichtung der Probe beiträgt. Die multifunktionale Probenhalteranpassung: Sie kann an verschiedene Arten von Proben angepasst werden, z. B. Feststoffe, Flüssigkeiten, Pulver usw. Durch den Austausch verschiedener Probenhalterungen oder Zubehörteile können die Testanforderungen verschiedener Proben erfüllt werden. Die multifunktionale Umgebungskontrolle des Probenhalters: Einige moderne Probenhalter sind außerdem mit Umgebungskontrollsystemen ausgestattet, mit denen Proben unter bestimmten Temperatur-, Feuchtigkeits-, Atmosphären- und anderen Bedingungen getestet werden können, um die Auswirkungen verschiedener Umgebungen auf Proben zu simulieren und so den Anwendungsbereich von Röntgendiffraktometern weiter zu erweitern. Der Multifunktionsprobenhalter im Röntgendiffraktometer ist ein leistungsstarkes, flexibles und vielseitiges Zusatzgerät, das für die Verbesserung der Genauigkeit und Effizienz von Röntgenbeugungsexperimenten von großer Bedeutung ist.
Das Zubehör für parallele optische Filmmessungen ist eine optische Komponente, die verwendet wird, um die Signalintensität dünner Filme zu erhöhen und den Einfluss von Substratsignalen auf die Messergebnisse zu verringern. Wird normalerweise in optischen Experimenten oder Instrumenten verwendet, hauptsächlich zur Erzeugung paralleler Strahlen oder zur Durchführung optischer Messungen an Dünnschichtproben. Durch Erhöhen der Gitterlänge kann eine präzisere Steuerung und Filterung des Lichts erreicht werden. Wenn Licht durchdringt, kann die Gitterplatte mehr gestreute Linien herausfiltern, wodurch das durchgelassene Licht reiner und konzentrierter wird. Dadurch wird die Interferenz von gestreutem Licht auf das Dünnschichtsignal verringert und die Signalstärke der Dünnschicht selbst erhöht, wodurch die Genauigkeit und Zuverlässigkeit der Messung verbessert wird. 1. Hauptfunktion des parallelen optischen Filmmesszubehörs Verbesserung der Messgenauigkeit: Bei der Erkennung und Analyse dünner Filme, wie etwa der Messung der Filmdicke oder der Bestimmung optischer Konstanten, können parallele Lichtdünnfilmaufsätze den Einfluss von Substratsignalen wirksam reduzieren, sodass die Messergebnisse näher an den wahren Eigenschaften des dünnen Films liegen und dadurch die Messgenauigkeit und -präzision verbessert wird. Signalstärke verbessern: Hilft, die Intensität des vom Dünnfilm reflektierten oder übertragenen Lichtsignals zu erhöhen, was besonders bei einigen Dünnfilmproben mit schwächeren Signalen wichtig ist. Das verstärkte Signal kann vom Detektor deutlicher empfangen und erkannt werden, wodurch die Nachweisgrenze verringert und die Empfindlichkeit des Instruments zum Nachweis von Dünnfilmproben verbessert wird. Verbesserung der Bildqualität: Bei einigen Anwendungen, die eine bildgebende Beobachtung dünner Filme erfordern, wie z. B. bei der Beobachtung der Oberflächenmorphologie dünner Filme unter einem Mikroskop, können Dünnfilmaufsätze mit parallelem Licht Hintergrundrauschen und Unschärfe durch Streulicht reduzieren, wodurch das Bild des dünnen Films klarer und kontrastreicher wird und die detaillierte Struktur des dünnen Films leichter beobachtet und analysiert werden kann. 2. Hauptkomponenten des parallelen optischen Filmmesszubehörs Lichtquelle: Normalerweise werden Laser, LEDs oder andere monochromatische Lichtquellen verwendet. Kollimatorlinse: wandelt divergierende Lichtstrahlen in paralleles Licht um. Probenständer: dient zum Platzieren von Filmproben und ist in der Regel in Position und Winkel verstellbar. Detektor: dient zum Empfangen von gesendeten oder reflektierten Lichtsignalen zur Messung und Analyse. 3. Anwendungsgebiete des paralleloptischen Filmmesszubehörs Optische Forschung: dient der Untersuchung der optischen Eigenschaften dünner Filme, wie Interferenz, Beugung usw. Materialwissenschaft: Wird verwendet, um die Dicke und den Brechungsindex dünner Filme zu messen und Materialeigenschaften zu bewerten. Industrielle Prüfung: Wird zur Qualitätskontrolle und Prüfung bei der Filmproduktion verwendet. 4. Anleitung für das parallel-optische Filmmesszubehör Justieren Sie die Lichtquelle: Stellen Sie sicher, dass die Lichtquelle stabil ist und der Strahl gleichmäßig ist. Kollimierter Strahl: Passen Sie den Lichtstrahl durch eine Kollimationslinse an, um ihn parallel zu machen. Platzieren Sie die Probe: Platzieren Sie die Filmprobe auf dem Probentisch und passen Sie Position und Winkel an. Messung und Analyse: Verwenden Sie Detektoren, um Lichtsignale zu empfangen, Daten aufzuzeichnen und Analysen durchzuführen. 5. Vorsichtsmaßnahmen Stabilität der Lichtquelle: Stellen Sie die Stabilität der Lichtquelle sicher, um Messfehler zu vermeiden. Reinigung optischer Komponenten: Halten Sie die optischen Komponenten sauber, um zu vermeiden, dass Staub und Flecken die Messergebnisse beeinträchtigen. Probenvorbereitung: Stellen Sie sicher, dass die Filmprobe gleichmäßig und fehlerfrei ist, um genaue Messergebnisse zu erhalten. Zusammenfassend lässt sich sagen, dass das Zubehör für die parallele optische Filmmessung eine wichtige optische Komponente ist, die in vielen Bereichen eine entscheidende Rolle spielt und für die Förderung der wissenschaftlichen Forschung und des technologischen Fortschritts in verwandten Bereichen von großer Bedeutung ist.
Das Mittel- und Niedertemperaturzubehör eines Röntgendiffraktometers ist eine Schlüsselkomponente für die Röntgenbeugungsanalyse in Niedertemperaturumgebungen. Das Mittel- und Niedertemperaturzubehör wird häufig in der Forschung und Entwicklung in den Materialwissenschaften, der Physik, der Chemie und anderen Bereichen verwendet und eignet sich besonders für Szenarien, die eine Strukturanalyse von Materialien unter unterschiedlichen Temperaturbedingungen erfordern. Um die Änderungen in der Kristallstruktur während des Niedertemperaturkühlungsprozesses zu verstehen, sind im Folgenden die technischen Parameter des Mittel- und Niedertemperaturzubehörs aufgeführt: Vakuumumgebung: - 196 ~ 500 ℃ Genauigkeit der Temperaturregelung: ± 0,5 ℃ Kühlmethode: flüssiger Stickstoff (Verbrauch weniger als 4 l/h) Fenstermaterial: Polyesterfolie Kühlmethode: deionisierte Wasserzirkulationskühlung Kurz gesagt ist das Mittel- und Niedertemperaturzubehör eines Röntgendiffraktometers eine wichtige Gerätekomponente, die wissenschaftliche Forschung und Materialanalyse stark unterstützen kann. Das Mittel- und Niedertemperaturzubehör eines Diffraktometers ist eines der wichtigsten Werkzeuge auf dem Gebiet der Materialstrukturanalyse mit breiten Anwendungsaussichten und erheblichem Forschungswert. Das Mittel- und Niedertemperaturzubehör des Diffraktometers ist eine Schlüsselkomponente, um den normalen Betrieb und die genaue Messung des Instruments unter Niedertemperaturbedingungen sicherzustellen. Sein Design und seine Leistung wirken sich direkt auf die Genauigkeit und Zuverlässigkeit der Versuchsergebnisse aus. Bei der Auswahl und Anwendung des Mittel- und Niedertemperaturzubehörs sollten die Versuchsanforderungen, die Probeneigenschaften sowie die technischen Parameter und Leistungsmerkmale des Zubehörs vollständig berücksichtigt werden, um die besten Versuchsergebnisse sicherzustellen.