
Nachrichten
Das Röntgendiffraktometer TD-3700 ist ein leistungsstarkes und hochauflösendes Röntgenanalysegerät, das sich durch schnelle Analyse, komfortable Bedienung und hohe Sicherheit auszeichnet. 1. Technische Eigenschaften des Röntgendiffraktometers TD-3700 (1) Kernkonfiguration des Röntgendiffraktometers Ausgestattet mit einem schnellen eindimensionalen Array-Detektor (SDD) und gemischter Photonenzähltechnologie gibt es keine Störgeräusche. Die Datenerfassungsgeschwindigkeit übertrifft die herkömmlicher Szintillationsdetektoren bei weitem (mehr als hundertmal schneller). Der Detektor verfügt über einen hohen Dynamikbereich (24 Bit) und eine exzellente Energieauflösung (687 ± 5 eV). Dank einer importierten speicherprogrammierbaren Steuerung (SPS) bietet er automatisierte Steuerung, geringe Ausfallrate, hohe Entstörungsfähigkeit und gewährleistet einen stabilen Betrieb der Hochspannungsversorgung für Röntgenröhren. (2) Winkelmesssystem des Röntgendiffraktometers Das Messgerät verfügt über eine vertikale θ/θ-Winkelstruktur. Die Probe wird horizontal platziert und ermöglicht die Prüfung verschiedener Probenformen wie Flüssigkeiten, Sole, Pulver und Blöcke. So wird verhindert, dass Proben in das Lager fallen und Korrosion verursachen. Der Scanbereich des 2 θ-Winkels beträgt -110 ° bis 161 °, mit einer minimalen Schrittweite von 0,0001 °, einer Wiederholgenauigkeit von ± 0,0001 ° und einer Winkellinearität von ± 0,01 °, was für hochpräzise Strukturanalysen geeignet ist. Unterstützt werden sowohl der konventionelle Reflexionsmodus als auch der Transmissionsmodus. Letzterer bietet eine höhere Auflösung und eignet sich für Spurenproben (z. B. Pulver mit geringer Ausbeute) und Strukturanalysen. (3) Das Röntgenerzeugungssystem des Röntgendiffraktometers Die Nennleistung kann zwischen 3 kW und 5 kW gewählt werden, mit einem Röhrenspannungsbereich von 10 bis 60 kV, einem Röhrenstrom von 2 bis 80 mA und einer Stabilität von ≤ 0,005 %. Standard-Cr/Co/Cu-Targetmaterial, geeignet für unterschiedliche Anforderungen der Materialanalyse. 2. Software und Steuerung des Röntgenbeugungsinstruments TD-3700 (1) Steuerungssoftware für Röntgendiffraktometer Die vollständig chinesische Benutzeroberfläche unterstützt Windows XP und ermöglicht die automatische Regelung von Röhrendruck, Röhrendurchfluss und Lichtschalter. Zudem verfügt sie über eine Trainingsfunktion zur Alterung der Röntgenröhre. Die Anwendungssoftware bietet Verarbeitungsfunktionen wie Peaksuche, Hintergrundsubtraktion, Kα2-Stripping, Integrationsberechnung, Spektrumvergleich usw. Sie unterstützt das Einfügen von Textanmerkungen und verschiedene Skalierungsvorgänge. (2) Betriebssicherheit des Röntgendiffraktometers Doppeltes Schutzsystem (Verbindung von Lichttor und Bleitor), Röntgenleckrate ≤ 0,1 μ Sv/h, gemäß nationalen Normen. Ausgestattet mit einem Umwälzkühlsystem (geteilt oder integriert), automatischer Temperaturregelung und Überwachung der Wasserdurchflussrate, des Kühlmitteldrucks usw., um eine Verstopfung der Röntgenröhre zu vermeiden. 3. Anwendungsszenarien des Röntgendiffraktometers TD-3700 (1) Die Kernfunktion des Röntgendiffraktometers Qualitative/quantitative Analyse von Phasen, Analyse der Kristallstruktur, Bestimmung von Korngröße und Kristallinität. Makroskopische/mikroskopische Spannungserkennung, Analyse der Materialorientierung (z. B. dünne Filme, Massenproben). (2) Anwendungsgebiete des Röntgendiffraktometers Materialwissenschaft: Keramik, Metalle, Polymere, supraleitende Materialien usw. Umwelt und Geologie: Boden-, Gesteins-, Mineralanalyse und Erdölprotokollierung. Chemie und Pharmazie: Identifizierung pharmazeutischer Inhaltsstoffe, Kristallinitätsprüfung chemischer Produkte. Sonstiges: Lebensmittelkontrolle, elektronische Materialien, magnetische Materialien usw. 4. Produktvorteile des Röntgendiffraktometers TD-3700 (1) Modularer Aufbau: Das Hardwaresystem ist modular aufgebaut und unterstützt mehrere Plug-and-Play-Zubehörteile (wie optisches Zubehör und Software für Spezialfunktionen), ohne dass der optische Pfad manuell angepasst werden muss. (2) Effizientes und sicheres Auswuchten: Die Ein-Klick-Bedienung vereinfacht den Vorgang und reduziert gleichzeitig das Ausfallrisiko durch SPS-Steuerung, Schutzsystem und automatische Alarmfunktionen (wie Überstromschutz und Übertemperaturwarnung). (3) Durchbruch bei der Lokalisierung: Die TD-Serie ist das einzige XRD-Gerät in China, das programmierbare Steuerungstechnologie verwendet, mit einer Leistung, die mit importierten Modellen (wie D8 ADVANCE) vergleichbar ist, und deutlich reduzierten Ausfallraten. Das TD-3700Röntgen-Diffraktometer ist ein leistungsstarkes und weit verbreitetes Röntgen-Diffraktometer. Sein leistungsstarker Detektor, das präzise Winkelmesssystem, die leistungsstarken Softwarefunktionen und das breite Anwendungsspektrum machen es zu einem wichtigen Werkzeug in der wissenschaftlichen Forschung und der industriellen Produktion.
Das TD-5000 Röntgen-Einkristall-Diffraktometer ist ein Hochleistungs-Analysegerät, das von Dandong Tongda Technology Co., Ltd. entwickelt und hergestellt wird. Im Folgenden finden Sie eine detaillierte Einführung in das Gerät: 1. Aufbau und technische Eigenschaften des Einkristall-Diffraktometers (1) Grundlegender technischer Support Die Verwendung der konzentrischen Vierkreis-Winkelmesstechnik stellt sicher, dass die Mittelposition des Winkelmessgeräts während der Rotation konstant bleibt, was die Datenintegrität und -genauigkeit verbessert. Ausgestattet mit einem Hybrid-Pixel-Detektor, kombiniert mit Einzelphotonenzählung und Hybrid-Pixel-Technologie, erreicht es eine rauscharme Datenerfassung mit hohem Dynamikbereich, die sich für anspruchsvolle Probenanalysen eignet. Ein Hochleistungs-Röntgengenerator (3 kW oder 5 kW) unterstützt die Auswahl von Cu/Mo und anderen Zielmaterialien mit einer Brennweite von 1 × 1 mm und einer Divergenz von 0,5–1 mrad und erfüllt verschiedene experimentelle Anforderungen. (2) Modularisierung und Betriebsoptimierung Die gesamte Maschine nutzt SPS-Steuerungstechnologie und modulares Design, um Plug-and-Play-Zubehör zu ermöglichen und den Kalibrierungsprozess zu verkürzen. Der Touchscreen überwacht den Gerätestatus in Echtzeit, und das Ein-Klick-Erfassungssystem vereinfacht die Bedienung. Die elektronische Bleitürverriegelung bietet doppelten Schutz mit einer Röntgenleckage von ≤ 0,12 µSv/h (bei maximaler Leistung). 2. Technische Parameter des Einkristalldiffraktometers (1) Genauigkeit und Wiederholbarkeit 2 θ Winkelwiederholgenauigkeit: 0,0001 ° Minimaler Schrittwinkel: 0,0001 ° Temperaturregelbereich: 100 K ~ 300 K, Regelgenauigkeit ± 0,3 K. (2) Detektorleistung Sensible Fläche: 83,8 × 70,0 mm² Pixelgröße: 172 × 172 μ m², Pixelabstandsfehler<0.03% Maximale Bildrate: 20 Hz, Auslesezeit von 7 ms, Energiebereich von 3,5~18 keV. (3) Weitere Schlüsselparameter Röntgenröhrenspannung: 10–60 kV (1 kV/Schritt), Stromstärke 2–50 mA oder 2–80 mA. Verbrauch von flüssigem Stickstoff: 1,1–2 l/Stunde (Niedertemperaturexperiment). 3. Anwendungsgebiete des Einkristalldiffraktometers (1) Hauptforschungsrichtung Kristallstrukturanalyse: Analysieren Sie die atomare Anordnung, Bindungslänge, Bindungswinkel, Molekülkonfiguration und Elektronenwolkendichte von Einkristallmaterialien. Arzneimittelkristallographie: Untersuchen Sie die Kristallmorphologie von Arzneimittelmolekülen, bewerten Sie Stabilität und biologische Aktivität. Entwicklung neuer Materialien: Analysieren Sie die dreidimensionale Struktur synthetisierter Verbindungen, um die Optimierung der Materialleistung zu unterstützen. Nanomaterialien und Phasenübergangsforschung: Untersuchung der Eigenschaften von Nanokristallen und des Mechanismus des Materialphasenübergangs. (2) Typische Benutzer Fakultät für Materialwissenschaft und -technologie an der Huazhong University of Science and Technology, der Zhejiang University, der University of Science and Technology of China und anderen Universitäten. Forschungseinrichtungen wie die China Aerospace Science and Technology Corporation und die China Shipbuilding Industry Corporation. 4. Kundendienst für Einkristalldiffraktometer Bereitstellung von Originalersatzteilen, Hauswartung, Ferndiagnose und Software-Upgrade-Diensten. Regelmäßige Kalibrierungsdienste (unter Einhaltung internationaler Standards) und Bereitstellung von Betriebs- und Anwendungsschulungen für Benutzer. 5. Zubehör und erweiterte Funktionen für Einkristall-Diffraktometer (1) Optionale Anhänge Mehrschicht-Filmfokussierlinse (Divergenz von 0,5–1 mrad). Niedertemperaturgerät (Kühlung mit flüssigem Stickstoff). (2) Kompatible Geräte Es kann in Verbindung mit einem Röntgenfluoreszenzspektrometer (XRF), einem Rasterelektronenmikroskop (SEM) usw. verwendet werden, um eine mehrskalige Materialanalyse durchzuführen. Als High-End-Einkristall-Diffraktometer erreicht die Leistung des TD-5000 internationale Standards und eignet sich daher besonders für Universitäten, Forschungsinstitute und die Entwicklung hochwertiger Materialien. Weitere Informationen finden Sie auf der offiziellen Website der Dandong Tongda Technology Co., Ltd.
Spezielle gewellte Keramikrohre, Metallkeramikrohre und Glasrohre für Analysegeräte, geeignet für verschiedene Modelle von XRD, XRF, Kristallanalysatoren und Orientierungsinstrumenten im In- und Ausland. Eine Röntgenröhre ist ein elektronisches Vakuumgerät, das durch Hochgeschwindigkeits-Elektroneneinwirkung auf ein metallisches Zielmaterial Röntgenstrahlen erzeugt. Aufbau, Prinzip und Anwendung weisen verschiedene technische Merkmale auf. 1. Grundaufbau einer Röntgenröhre (1) Kathode (Elektronenemissionsquelle) Röntgenröhren bestehen aus Wolframfilamenten. Sie erhitzen sich nach dem Einschalten und emittieren Elektronen. Sie sind um eine Fokussierabdeckung (Kathodenkopf) gewickelt, um die Richtung des Elektronenstrahls zu steuern. Die Filamenttemperatur beträgt etwa 2000 K, und die Elektronenemission wird durch den Strom geregelt. (2) Anode (Targetmaterial) Normalerweise werden Metalle mit hohem Schmelzpunkt (wie Wolfram, Molybdän, Rhodium usw.) verwendet, um dem Beschuss mit hochenergetischen Elektronen standzuhalten und Röntgenstrahlen zu erzeugen. Enthält Anodenkopf (Zieloberfläche), Anodenkappe, Glasring und Anodengriff, die für die Wärmeableitung (durch Strahlung oder Leitung) und die Absorption von Sekundärelektronen verantwortlich sind. (3) Vakuumschale und Fenster Die Glas- oder Keramikhülle hält ein Hochvakuum (mindestens 10 ⁻⁴ Pa) aufrecht, um Elektronenstreuung zu vermeiden. Die Fenstermaterialien erfordern eine geringe Röntgenabsorption, üblicherweise werden Berylliumplatten, Aluminium oder Lindemann-Glas verwendet. 2. Funktionsprinzip der Röntgenröhre (1) Elektronenbeschleunigung und -stoß Die vom Kathodenfaden emittierten Elektronen werden durch Hochspannung (im Kilovolt- bis Megavolt-Bereich) beschleunigt und kollidieren mit dem Anodenmaterial. Der Prozess der Umwandlung elektronischer kinetischer Energie in Röntgenstrahlen umfasst: Bremsstrahlung: Röntgenstrahlen mit kontinuierlichem Spektrum, die freigesetzt werden, wenn Elektronen abgebremst oder abgelenkt werden. Charakteristische Strahlung: Röntgenstrahlen (wie Kα- und Kβ-Linien), die durch Elektronenübergänge in der inneren Schicht des Zielmaterials freigesetzt werden. (2) Energieumwandlung und Wirkungsgrad Nur etwa 1 % der Elektronenenergie wird in Röntgenstrahlen umgewandelt, der Rest wird in Form von Wärme abgegeben, was eine Zwangskühlung (z. B. bei einer rotierenden Anodenkonstruktion) erfordert. 3. Klassifizierung und Anwendungsszenarien von Röntgenröhren (1) Durch die Erzeugung elektronischer Mittel Aufblasbarer Schlauch: ein früher Typ, der auf Gasionisation zur Elektronenerzeugung beruht, mit geringer Leistung und kurzer Lebensdauer (mittlerweile veraltet). Vakuumröhre: Moderne Mainstream-Hochvakuumumgebung verbessert die elektronische Effizienz und Stabilität. (2) Nach Zweck Im medizinischen Bereich werden bei diagnostischen (z. B. Zahn- und Brustuntersuchungen) und therapeutischen (z. B. Strahlentherapie) Röntgenröhren häufig rotierende Anoden verwendet, um die Leistungsdichte zu erhöhen. Industrielle Prüfung: Zerstörungsfreie Prüfung, Materialstrukturanalyse usw. mit Schwerpunkt auf hoher Durchdringung (harte Röntgenstrahlen). (3) Je nach Kühlmethode Feste Anode: einfache Struktur, geeignet für Szenarien mit geringem Stromverbrauch. Rotierende Anode: Die Zieloberfläche rotiert mit hoher Geschwindigkeit (bis zu 10.000 Umdrehungen pro Minute), um die Wärmeableitung zu verbessern und eine hohe Leistungsabgabe zu unterstützen. 4. Leistungsmerkmale und Grenzen von Röntgenröhren (1) Vorteile Niedrige Kosten, geringe Größe, einfache Bedienung, geeignet für routinemäßige medizinische und industrielle Tests. Flexible Anpassung der Zielmaterialien (wie Wolfram, Molybdän, Kupfer), um unterschiedliche Energieanforderungen zu erfüllen. (2) Einschränkungen Geringe Helligkeit und Kollimation, großer Röntgendivergenzwinkel, der zusätzliche Kollimatoren erfordert. Das Energiespektrum ist kontinuierlich und enthält charakteristische Linien, die eine Filterung oder Monochromatisierung erfordern (z. B. Verwendung von Nickelfiltern zur Entfernung von Kβ-Linien). 5. Vergleich zwischen Röntgenröhren und Synchrotronstrahlungsquellen (1) Helligkeit und Lichtstrom Röntgenröhre: Geringe Helligkeit, geeignet für Routinetests. Synchrotronstrahlungslichtquelle: mit einer 106- bis 1012-mal höheren Helligkeit, geeignet für Spitzenforschung wie Nanoimaging und Proteinkristallographie. (2) Spektrale Eigenschaften Röntgenröhre: Diskrete Kennlinien + kontinuierliches Spektrum, Energiebereich durch Beschleunigungsspannung begrenzt. Synchrotronstrahlung: breites kontinuierliches Spektrum (von Infrarot bis zu harten Röntgenstrahlen), präzise abstimmbar. (3) Zeitliche Merkmale Röntgenröhre: Kontinuierliche oder im Mikrosekundenbereich liegende Impulse (rotierendes Ziel). Synchrotronstrahlung: Impulse im Femtosekundenbereich, geeignet zum Studium dynamischer Prozesse wie chemischer Reaktionen. 6. Technische Parameter der Röntgenröhre (1) Optionale Zielmaterialtypen: Cu, Co, Fe, Cr, Mo, Ti, W usw. (2) Fokustyp: 0,2 × 12 mm2 oder 1 × 10 mm2 oder 0,4 × 14 mm2 (Feinfokus) (3) Größere Ausgangsleistung: 2,4 kW oder 2,7 kW Röntgenröhren dominieren aufgrund ihrer praktischen Anwendbarkeit und Wirtschaftlichkeit in Bereichen wie der medizinischen Diagnostik und industriellen Tests, weisen jedoch Leistungsengpässe auf. Für Bereiche, die eine hohe Auflösung und Helligkeit erfordern (wie beispielsweise in der Spitzenforschung), sind fortschrittliche Technologien wie Synchrotronstrahlungsquellen unerlässlich. Zukünftige Entwicklungsschwerpunkte sind die Verbesserung der Energieumwandlungseffizienz, die Optimierung von Wärmeableitungsstrukturen und die Entwicklung miniaturisierter Röntgenquellen.
Der rotierende Probenhalter ist ein experimentelles Gerät zur präzisen Kontrolle der Probenausrichtung und wird häufig in Bereichen wie der Röntgenbeugung (XRD), der spektroskopischen Analyse und der Materialprüfung eingesetzt. Durch die Rotation der Probe können Vorzugsorientierungen eliminiert und so Messgenauigkeit und Wiederholbarkeit verbessert werden. 1. Die Kernfunktion des rotierenden Probenhalters (1) Beseitigung der bevorzugten Orientierung: Durch Drehen der Probenebene (β-Achse) werden Beugungsfehler, die durch grobe Körner oder Textur verursacht werden, reduziert, wodurch die Reproduzierbarkeit der Beugungsintensität gewährleistet wird. (2) Mehrpositionsmessung: Führen Sie Mehrwinkelmessungen an unebenen Proben (wie z. B. Körnern) durch, mitteln Sie die Daten an verschiedenen Positionen und verbessern Sie die Genauigkeit und Wiederholbarkeit der Ergebnisse. (3) Automatisierter Betrieb: Einige Geräte unterstützen die automatische Rotation und den Probenwechsel, um die Testeffizienz zu verbessern (z. B. der vollautomatische rotierende Probenhalter für XRD). 2. Technische Eigenschaften des rotierenden Probenhalters (1) Strukturelle Gestaltung: Antriebsmodus: Eine präzise Drehung wird durch Mechanismen wie Motoren, Wellen, Zahnräder und Zahnstangen erreicht, und einige Geräte sind mit Servomotoren und Encodern zur Korrektur der Geschwindigkeit ausgestattet. Klemmvorrichtung: Die Probe wird mittels einer Druckklemme, einem Kartenschlitz oder einem Klemmblock fixiert und die Innenseite zur Anpassung an unterschiedliche Materialien teilweise mit einer Gummischicht eingeklemmt. Rotationsparameter: Die Rotationsgeschwindigkeit kann 1–60 U/min erreichen, mit einer minimalen Schrittweite von 0,1º, und unterstützt kontinuierliche oder Schrittmodi. (2) Anpassungsfähigkeit: Kann in XRD-Instrumenten, optischen/elektrischen Testsystemen usw. installiert werden und unterstützt mehrere Probenhalter (wie reflektierende Sonden, In-situ-Batteriezubehör usw.). Einige Geräte unterstützen eine 360°-Drehung und sind mit verschiedenen Messanforderungen wie Optik und Elektronik kompatibel. 3. Anwendungsszenarien des rotierenden Probenhalters (1) Röntgenbeugung (XRD): Wird zur Analyse von Proben mit Textur oder Kristallographie (wie Metallmaterialien, dünne Filme) verwendet, um den Einfluss der bevorzugten Ausrichtung auf die Beugungsergebnisse zu eliminieren. Das vollautomatische Modell kann die Effizienz von Tests mit mehreren Proben verbessern, die Anzahl der Türöffnungs- und -schließzeiten reduzieren und die Lebensdauer der Geräte verlängern. (2) Spektralanalyse und Materialprüfung: Wird zur Messung ungleichmäßiger Proben (z. B. Körner) mit reflektierenden Sonden verwendet, indem Spektraldaten an verschiedenen Positionen rotiert und gemittelt werden. Passt sich an Umgebungen mit hohen und niedrigen Temperaturen vor Ort an und unterstützt komplexe Versuchsbedingungen. (3) Multifunktionales Experiment: Durch die Kombination von Sonden, elektrischen oder optischen Probenhaltern können umfassende Tests der elektrischen Eigenschaften, der Oberflächenmorphologie und anderer Merkmale durchgeführt werden. Der rotierende Probenhalter löst das Messfehlerproblem, das durch die bevorzugte Ausrichtung herkömmlicher fester Probentische entsteht, indem er die Probenausrichtung präzise steuert. Gleichzeitig machen ihn seine Automatisierung und Multi-Szenen-Anpassbarkeit zu einem wichtigen Werkzeug in Bereichen wie XRD und Spektralanalyse. Die spezifische Auswahl muss basierend auf experimentellen Anforderungen wie Rotationsgenauigkeit, Probentyp und Automatisierungsgrad mit dem entsprechenden Modell abgestimmt werden.
Der Kleinwinkel-Beugungsvorsatz ist eine spezielle Komponente, die in Röntgenbeugungsinstrumenten hauptsächlich zur Analyse der Struktur und Dicke von Materialien im Nanomaßstab verwendet wird. 1. Kernfunktionen von Kleinwinkel-Beugungsvorsätzen (1) Beugungswinkelbereich: deckt einen kleinen Winkelbereich von 0 ° -5 ° ab, geeignet für die Beugungsanalyse von Materialien im Nanomaßstab. (2) Hauptanwendung: Es kann die Dicke von Nano-Mehrschichtfilmen genau testen und die Untersuchung der Materialoberfläche oder der Grenzflächenstruktur unterstützen. 2. Kompatible Geräte für Kleinwinkel-Beugungsvorsätze Dieser Aufsatz wird normalerweise in Verbindung mit Röntgendiffraktometern (wie TD-3500, TD-3700, TDM-20 usw.) verwendet. 3. Anwendungsszenarien von Kleinwinkel-Beugungsvorsätzen (1) Materialwissenschaft: Charakterisierung von Nanofilmen und mehrschichtigen Filmstrukturen. (2) Chemie und Verfahrenstechnik: Oberflächenbehandlung von Werkstoffen, Prüfung der Schichtdicke. (3) Weitere Bereiche: Nanoskalige Analyse von Materialien wie Geologie, Mineralien, Keramik und Pharmazeutika. 4. Herstellerinformationen Dandong Tongda Technology Co., Ltd. ist der Haupthersteller dieser Art von Zubehör. Seine Analysegeräte der TD-Serie erreichen internationale Standards oder nähern sich diesen an und werden in Länder wie die USA und Aserbaidschan exportiert. Kleinwinkelbeugungsaufsätze sind wichtige Werkzeuge für die Nanomaterialanalyse und die Messung dünner Schichten und müssen in Verbindung mit speziellen Röntgenbeugungsgeräten eingesetzt werden. Ihre Anwendungsgebiete liegen in zukunftsweisenden Bereichen wie Materialwissenschaft und Chemieingenieurwesen.
Das Zubehör zur parallelen optischen Filmmessung ist eine spezielle Komponente, die in Röntgendiffraktometern hauptsächlich zur Verbesserung der Signalintensität und Erkennungsgenauigkeit von Dünnschichtproben verwendet wird. 1.Kernfunktionen des paralleloptischen Filmmesszubehörs Unterdrückung von Streuinterferenzen: Durch die Vergrößerung der Gitterlänge werden mehr Streustrahlen herausgefiltert, die Interferenzen des Substratsignals mit den Beugungsergebnissen des Dünnfilms verringert und somit die Signalstärke des Dünnfilms verbessert. Verbesserung der Genauigkeit der Dünnschichtanalyse: Geeignet für Dickentests und andere Szenarien von Nano-Mehrschichtdünnschichten. In Kombination mit Kleinwinkelbeugungsaufsätzen kann eine Kleinwinkelbeugungsanalyse im Bereich von 0° bis 5° erreicht werden. 2. Strukturelle Merkmale von parallelem optischem Filmmesszubehör Gitterdesign: Durch die Verlängerung der Gitterlänge wird der Röntgenstrahlenweg optimiert, die Filterfähigkeit gestreuter Strahlen verbessert und die Reinheit des Dünnschicht-Beugungssignals sichergestellt. 3. Anwendungsbereich des parallelen optischen Filmmesszubehörs Forschung zu Dünnschichtmaterialien: Kristallstrukturanalyse von Nano-Mehrschichtfilmen und ultradünnen Filmen. Halbleiter- und Beschichtungsprüfung: Wird verwendet, um die Gleichmäßigkeit, Kristallqualität und andere Eigenschaften dünner Filme zu bewerten. 4. Kompatible Geräte für paralleloptisches Filmmesszubehör Dieser Aufsatz kann an verschiedene Röntgendiffraktometermodelle angepasst werden, darunter: TD-3500 Röntgendiffraktometer TD-5000 Röntgen-Einkristall-Diffraktometer TD-3700 hochauflösendes Röntgendiffraktometer TDM-20 Desktop-Röntgendiffraktometer Insgesamt verbessert das parallele optische Filmmesszubehör die Beugungssignalqualität von Dünnschichtproben durch Strukturoptimierung und Streuungsunterdrückung erheblich und wird häufig in der Materialwissenschaft, der Halbleiterherstellung und anderen Bereichen eingesetzt, insbesondere für die Anforderungen hochpräziser Analysen von Nanodünnschichten.
In-situ-Zubehör für mittlere und niedrige Temperaturen ist experimentelles Zubehör für die Materialanalyse, hauptsächlich für In-situ-Tests in Umgebungen mit niedrigen oder mittleren Temperaturen. In Kombination mit Vakuumumgebung, Temperaturregelung und speziellem Fenstermaterialdesign findet es breite Anwendung in Bereichen wie Chemie, Materialwissenschaft und Katalyseforschung. 1. Kernfunktionen und technische Parameter von In-situ-Mittel- und Niedertemperaturzubehör (1) Temperaturbereich und Regelgenauigkeit Unterstützt einen Temperaturbereich von -196 °C bis 500 °C in einer Vakuumumgebung (z. B. Flüssigstickstoffkühlung) mit einer Temperaturregelgenauigkeit von ± 0,5 °C. Einige Modelle decken Temperaturen von -150 °C bis 600 °C ab und eignen sich für ein breiteres Spektrum experimenteller Anforderungen. (2) Kühlverfahren und Kühlsystem Die Kühlung erfolgt mit Flüssigstickstoff, wobei der Verbrauch weniger als 4 l/h beträgt. Die Temperatur wird durch ein Kühlsystem mit deionisiertem Wasserkreislauf stabil gehalten. Optional ist ein Niedertemperatur-Kühlsystem mit Flüssigstickstoff (z. B. Cryostream-Serie) erhältlich. (3) Fenstermaterialien und strukturelles Design Das Fenstermaterial besteht meist aus Polyesterfolie (z. B. TD-Serie), und einige Infrarotkonfigurationen verwenden KBr- oder SiO2-Fenster. Die Struktur verfügt über eine hochdruckbeständige Konstruktion (z. B. 133 kPa) und ist mit mehreren Gasein-/auslässen ausgestattet, die für In-situ-Reaktionen oder zur Atmosphärenkontrolle geeignet sind. 2. Anwendungsgebiete von In-situ-Mittel- und Niedertemperaturzubehör (1) Materialforschung Wird für In-situ-Tests von Röntgendiffraktometern (z. B. TD-3500) verwendet, um Veränderungen der Kristallstruktur und Phasenübergangsprozesse bei niedrigen Temperaturen zu untersuchen. Unterstützt die Forschung zu heterogener Katalyse, Gas-Feststoff-Wechselwirkungen, photochemischen Reaktionen usw. (2) Elektrochemische und Batterieforschung Es kann auf In-situ-Batteriezubehör erweitert werden, um Verbundwerkstoffe in elektrochemischen Systemen (wie Kohlenstoff, Sauerstoff, Stickstoff, Schwefel usw.) mit einer Temperaturbeständigkeit von bis zu 400 °C zu testen. (3) Industrielle Anwendungen Die Produkte von Dandong Tongda Technology (TD-Serie) werden in den Bereichen Chemie, Chemieingenieurwesen, Geologie, Metallurgie usw. eingesetzt und in Länder wie die USA und Aserbaidschan exportiert. 3. Typische Produkte und Marken von Zubehör für mittlere und niedrige Temperaturen vor Ort Dandong Tongda Technology (TD-Serie) Das Zubehör für Röntgendiffraktometer wie TD-3500 und TD-3700 zeichnet sich durch hochpräzise Temperaturregelung (± 0,5 °C) und effiziente Kühlung mit flüssigem Stickstoff aus. Geeignet für diffuse Reflexionsspektroskopie-Messungen, mit Reaktionskammer aus Edelstahl, Mehrfensterkonfiguration (FTIR- oder UV-Vis-kompatibel) und Unterstützung für Hochvakuum bis 133 kPa. Insgesamt sind In-situ-Zubehörteile für mittlere und niedrige Temperaturen dank präziser Temperaturkontrolle, Vakuumumgebung und an verschiedene Instrumente angepasster Fenstergestaltung zu einem wichtigen Werkzeug für die In-situ-Materialanalyse geworden. Sie spielen eine unersetzliche Rolle bei der Untersuchung von Tieftemperatur-Kristallstrukturen und der Erforschung katalytischer Reaktionsmechanismen.
Zum Verständnis der Veränderungen der Kristallstruktur von Proben während der Hochtemperaturerhitzung und der Veränderungen der gegenseitigen Auflösung verschiedener Substanzen während der Hochtemperaturerhitzung. Die In-situ-Hochtemperaturbefestigung ist ein experimentelles Gerät zur In-situ-Charakterisierung von Materialien unter Hochtemperaturbedingungen, hauptsächlich zur Untersuchung dynamischer Prozesse wie Kristallstrukturänderungen, Phasenübergängen und chemischen Reaktionen von Materialien während der Hochtemperaturerhitzung. Im Folgenden finden Sie eine detaillierte Einführung hinsichtlich technischer Parameter, Anwendungsszenarien und Vorsichtsmaßnahmen: 1. Technische Parameter von In-situ-Hochtemperaturbefestigungen 1. Temperaturbereich von In-situ-Hochtemperaturbefestigungen Inertgas-/Vakuumumgebung: Die maximale Temperatur kann 1600 °C erreichen. Standardumgebung: Raumtemperatur bis 1200 °C (wie im TD-3500 XRD-Zubehör vorgesehen). 2. Temperaturkontrollgenauigkeit von In-situ-Hochtemperaturzubehör: normalerweise ± 0,5 °C (z. B. In-situ-Hochtemperaturzubehör), und die Genauigkeit einiger Geräte über 1000 °C beträgt ± 0,5 °C. 3. Fenstermaterialien und Kühlmethoden für In-situ-Hochtemperaturbefestigungen Fenstermaterial: Polyesterfolie (temperaturbeständig bis 400 °C) oder Berylliumblech (Dicke 0,1 mm), verwendet für die Röntgendurchdringung. Kühlmethode: Die Zirkulationskühlung mit deionisiertem Wasser gewährleistet einen stabilen Betrieb der Geräte unter Hochtemperaturbedingungen. 4. Atmosphären- und Druckkontrolle von In-situ-Hochtemperaturanbauteilen: Unterstützt Inertgase (wie Ar, N₂), Vakuum oder atmosphärische Umgebungen, und einige Modelle können Drücken von weniger als 10 Bar standhalten. Die Atmosphärengasdurchflussrate kann eingestellt werden (0,7–2,5 l/min), geeignet für Umgebungen mit korrosiven Gasen. Zwei Anwendungsszenarien für In-situ-Hochtemperaturbefestigungen 1. Materialforschung zu in-situ Hochtemperaturbefestigungen Analysieren Sie die Veränderungen der Kristallstruktur (z. B. den Phasenübergang von Platin) und Phasenübergangsprozesse (z. B. Schmelzen und Sublimation) bei hohen Temperaturen. Untersuchen Sie die chemischen Reaktionen von Materialien bei hohen Temperaturen, wie z. B. Auflösung und Oxidation. 2. Geräteadaption von In-situ-Hochtemperaturanbaugeräten Wird hauptsächlich in Röntgendiffraktometern (XRD) wie TD-3500, TD-3700 usw. verwendet. Es kann auch für In-situ-Zugversuche mittels Rasterelektronenmikroskopie (SEM) verwendet werden, wobei kundenspezifische Flanschverbindungen erforderlich sind. 1. Vorsichtsmaßnahmen bei der Verwendung von Hochtemperaturzubehör vor Ort 1. Beispielhafte Anforderungen an In-situ-Hochtemperaturbefestigungen Es ist notwendig, die chemische Stabilität der Probe im Zieltemperaturbereich vorab zu testen, um eine Zersetzung in starke Säuren/Basen oder eine keramische Bindung zu vermeiden. Die Probenform muss den Anforderungen der Befestigung entsprechen (z. B. Dicke 0,5–4,5 mm, Durchmesser 20 mm). 2. Experimentelle Betriebsverfahren für In-situ-Hochtemperaturbefestigungen Die Heizrate muss kontrolliert werden (z. B. maximal 200 °C/min bei 100 °C), um eine Überhitzung und Beschädigung des Geräts zu vermeiden. Nach dem Experiment muss die Probe auf Raumtemperatur abgekühlt werden, um strukturelle Schäden zu vermeiden.
Der multifunktionale Probentisch ist ein hochintegriertes Versuchsgerät, das vorwiegend in den Bereichen Materialwissenschaften, Halbleiterherstellung, Elektronenmikroskopieanalyse usw. eingesetzt wird. Seine Hauptmerkmale sind modulares Design, multifunktionale Integration und hochpräzise Steuerung. Die Kernfunktionen und strukturellen Merkmale der multifunktionalen Probenbühne 1. Modularer Aufbau des multifunktionalen Probentisches: Durch verschiedene Modulkombinationen werden mehrere Funktionen erreicht, wie etwa ein selbstdrehendes Kupplungsmodul (Geschwindigkeit 0–20 Umdrehungen pro Minute, mit Nullbegrenzung), ein Hubmodul (Standardhub 50 mm/100 mm, anpassbar), ein Heizmodul (Maximaltemperatur bis zu 1100 °C) usw. Unterstützt den Anschluss einer DC/RF-Stromversorgung, um den Anforderungen des Dünnschichtwachstums, der Probenreinigung oder der Bildung von Hilfsfilmen gerecht zu werden. 2. Hochpräzise Steuerung und Sensoren für multifunktionalen Probentisch: Ausgestattet mit Temperatur-, Druck- und anderen Sensoren, Echtzeitüberwachung der Umgebungsparameter der Probe und Anpassung von Heizung, Kühlung und anderen Vorgängen über das Steuerungssystem. Einige Modelle verfügen über integrierte pneumatische Prallmodule zur einfachen Bedienung. 3. Kompatibilität und Anpassungsfähigkeit des multifunktionalen Probentisches: Geeignet zum Testen unregelmäßiger Proben wie Spurenpulver, Plattenmaterialien und großformatiger Proben, wobei die durch herkömmliches Schneiden oder Schleifen verursachten Schäden vermieden werden. Unterstützt Probengrößen unter 6 Zoll und anpassbare Flanschschnittstellen. Hauptanwendungsbereiche des multifunktionalen Probenständers 1. Dünnschichttechnologie für multifunktionale Probenbühne: Wird für fortschrittliche Dünnschichtwachstumstechnologien wie MBE (Molekularstrahlepitaxie), PLD (gepulste Laserabscheidung), Magnetronsputtern sowie Substratglühen, Hochtemperaturentgasung und andere Prozesse verwendet. 2. Elektronenmikroskopische Analyse der multifunktionalen Probenbühne: Kaltfeld-Rasterelektronenmikroskop: Befestigen Sie die Probe mit langen Schrauben und stellen Sie die Leitfähigkeit mit kompatiblen Messingscheiben ein. TEM/FIB-System: integriert In-situ-Delamination, Nanosondentests und TEM-Analyse, um Verunreinigungen oder Schäden durch Probentransfer zu vermeiden. 3. Fehleranalyse der multifunktionalen Probenbühne: Integration von Atomstellenentfernung, elektrischen Tests und Analyseprozessen in FIB- und TEM-Systemen zur Verbesserung der Erfolgsrate und Effizienz. 1. Technische Vorteile des multifunktionalen Probentisches 1. Integration und Automatisierung eines multifunktionalen Probentisches: reduziert die Komplexität manueller Bedienung durch modulares Design, unterstützt die Gesamtbewegung und präzise Positionierung in einer Vakuumumgebung. 2. Hohe Zuverlässigkeit des multifunktionalen Probentisches: Verwendung von Standardflanschschnittstellen (wie CF50/CF40), um Abdichtung und Kompatibilität zu gewährleisten. 3. Anpassung des multifunktionalen Probentisches: Heizmaterial, Hublänge und Probenhaltertyp (z. B. 3-Backen-Bajonetttyp, Bodengabeltyp) können je nach Bedarf ausgewählt werden. Der multifunktionale Probentisch ist ein Schlüsselinstrument für die Materialforschung und Mikroanalyse und wird häufig in Röntgenbeugungsinstrumenten eingesetzt. Sein Wert liegt in der Funktionsintegration, der Flexibilität im Betrieb und der Anpassungsfähigkeit an komplexe experimentelle Anforderungen. Die spezifische Auswahl muss die entsprechenden Module und Leistungsparameter an die jeweiligen Anwendungsszenarien (z. B. Dünnschichttechnologie, Elektronenmikroskopie oder Fehleranalyse) anpassen.
1. Kernfunktionen und Anwendungsszenarien von Original-Batteriezubehör Funktionale Positionierung des Original-Batteriezubehörs: 1. Führen Sie während des Lade- und Entladevorgangs der Batterie Echtzeittests durch (z. B. XRD, optische Beobachtung usw.), um Datenverlust oder Probenkontamination durch herkömmliche Demontage zu vermeiden. 2. Simulieren Sie die Arbeitsumgebung echter Batterien, unterstützen Sie Temperaturregelung, Elektrolytzugabe und Versiegelungsgarantie. Typische Anwendungsszenarien von Original-Batteriezubehör: 1.XRD-In-situ-Test: Analysieren Sie die Kristallphasenänderungen von Elektrodenmaterialien (wie LiFePO4) während Lade- und Entladevorgängen. 2. Optische In-situ-Beobachtung: Beobachten Sie die Oberflächenreaktion der Elektrode durch ein Berylliumfenster (Polyesterfolie). 3. Hochdurchsatz-Screening: unterstützt die Batterieleistungsforschung unter verschiedenen Bedingungen (Temperatur, Druck, Elektrolyt). 4. Weit verbreitet in elektrochemischen Systemen, die Kohlenstoff, Sauerstoff, Stickstoff, Schwefel, eingebettete Metallkomplexe usw. enthalten. 1. Strukturelle Zusammensetzung und Materialeigenschaften von Originalbatteriezubehör 1.Kernkomponenten des ursprünglichen Batteriezubehörs: Untere Isolierabdeckung: meist aus Aluminiumoxidkeramik oder Polytetrafluorethylen, einschließlich Installationskammer und Kühlmittelflusskanal, unterstützt die Temperaturregelung. Obere leitfähige Abdeckung: mit Durchgangslöchern versehen, mit der unteren isolierenden Abdeckung verschraubt, um einen Strompfad zu bilden. Untere Elektrode: einschließlich oberer Platte und Stützsäule, durch Schmetterlingsfederkompression fixiert, was den Montageprozess vereinfacht. Berylliumfenster (Polyesterfolie): Durchmesser 15 mm (anpassbar), Dicke 0,1 mm (anpassbar), wird für die Röntgendurchdringung oder optische Beobachtung verwendet. 2. Technische Verbesserung des ursprünglichen Batteriezubehörs: Formale Montage: Ersetzt herkömmliche umgekehrte Methoden, vereinfacht den Betriebsvorgang und reduziert die Auswirkungen der Kompression auf den Separator und die positiven Elektrodenmaterialien. Kühlen und Heizen: Die untere Isolierabdeckung integriert einen Kühlmittelkanal oder eine Widerstandsdrahtleitung und unterstützt eine Temperaturregelung von -400 °C. Dichtungsdesign: Die Schmetterlingsfeder komprimiert und fixiert die untere Elektrode und wirkt mit dem Luftstrom des Installationssitzes zusammen, um Frost- und Eisbildung zu verhindern. 1. Technische Vorteile des ursprünglichen Batteriezubehörs 1. Komfortable Bedienung des Original-Akku-Zubehörs: Der formale Aufbau verkürzt die Betriebszeit im Handschuhfach und verringert den Montageaufwand. Der modulare Aufbau der Komponenten (wie austauschbare Berylliumfenster und Isolierhülsen) verbessert die Wartungseffizienz. 2. Leistungsparameter: Testbereich: Temperaturbereich von 0,5–160 °C, Temperaturbeständigkeit bis 400 °C. Versiegelung: Unterstützt die langfristige stabile Lagerung des Elektrolyten, um ein Auslaufen zu vermeiden. Kompatibilität: Geeignet für Röntgendiffraktometer und andere Geräte.
1. Die Hauptfunktionen und Anwendungen von Glasfaserzubehör: Faserzubehör des Röntgendiffraktometers: Mithilfe der Röntgenbeugungsmethode (Transmission) werden die Ausrichtung und Kristallstruktur der Probe durch Analyse der Kristallinität, der Halbwertsbreite und anderer Daten der Faser getestet. Zubehör für Fourier-Transformations-Infrarotspektrometer-Faser: einschließlich Mikroskop, diffuser Reflexion, abgeschwächter Totalreflexion (ATR) und anderem Zubehör zur Identifizierung der Faserzusammensetzung, Bestimmung des Mischungsverhältnisses, Einzelfaseranalyse usw. Mikro-Infrarot kann beispielsweise einzelne Zweikomponentenfasern identifizieren, und ATR-Aufsätze eignen sich zur Oberflächenstrukturanalyse ohne Probenvorbereitung. 2. Gängige Typen und Eigenschaften von Glasfaserzubehör: Spezielles Zubehör für Röntgendiffraktometer: z. B. Kleinwinkelbeugungszubehör, Zubehör für parallele Lichtdünnschichten, Zubehör für In-situ-Hoch-/Mitteltieftemperaturen usw., geeignet für unterschiedliche Prüfanforderungen. Einige Geräte unterstützen Funktionen wie automatische Probenwechsler und rotierende Probentische zur Verbesserung der Prüfeffizienz. Zubehör für Infrarotspektrometer: einschließlich Transmissionsprobenahmewerkzeuge (wie etwa Kaliumbromid-Kompressionsgerät), Mikroinfrarotzubehör (für Einzelfaseranalyse), Gerüste für diffuse Reflexion (geeignet für undurchsichtige Fasern) und ATR-Zubehör (für schnelle zerstörungsfreie Prüfungen) usw. 3. Typische Anwendungsszenarien für Glasfaserzubehör: Materialforschung: Analysieren Sie die Kristallstruktur und Molekülorientierung von Naturfasern (Baumwolle, Leinen usw.) und Chemiefasern (Polyester, Acryl usw.). Industrielle Qualitätsprüfung: Wird zur Bestimmung des Mischungsverhältnisses von Textilien und zur Optimierung der Faserverarbeitungstechnologie (z. B. Überwachung der Zugorientierung) verwendet. Forschungsgebiet: Untersuchung des Dichroismus von Polymeren, der Dehnungsorientierung von Mikrofaserbereichen usw. Zusammenfassend lässt sich sagen, dass Faserzubehör unverzichtbare Werkzeuge in der Materialanalyse und Faserprüfung sind. Ihre Entwicklung basiert auf Fortschritten in der Instrumententechnologie (wie XRD, FTIR) und Innovationen im Zubehördesign. Die spezifische Auswahl hängt von den Prüfanforderungen (wie Kristallstruktur, Zusammensetzungsidentifizierung) und dem Instrumentenmodell ab.
Der multifunktionale integrierte Messaufsatz dient zur Analyse von Filmen auf Platten, Blöcken und Substraten und kann Tests wie Kristallphasenerkennung, Ausrichtung, Textur, Spannung und In-Plane-Struktur von Dünnfilmen durchführen. Funktionale Eigenschaften des multifunktionalen integrierten Messzubehörs: Führen Sie Polardiagrammtests mithilfe von Transmissions- oder Reflexionsmethoden durch. Belastungstests können entweder mit der Parallel-Neigungsmethode oder der Gleich-Neigungsmethode durchgeführt werden. Dünnschichtprüfung (Rotation der Proben in der Ebene) Anwendungsbereiche von multifunktionalem integriertem Messzubehör: Bewertung von Metallbaugruppenstrukturen wie beispielsweise gewalzten Platten; Bewertung der Keramikorientierung; Bewertung der Kristallprioritätsorientierung in Dünnschichtproben; Eigenspannungsprüfung verschiedener metallischer und keramischer Werkstoffe (Bewertung der Verschleißfestigkeit, Schnittfestigkeit etc.); Eigenspannungsprüfung von Mehrschichtfolien (Beurteilung von Folienablösungen etc.); Analyse von Oberflächenoxidation und Nitridfilmen auf Hochtemperatur-Supraleitermaterialien wie dünnen Filmen und Metallplatten; Glas-Si. Analyse von Mehrschichtfilmen auf Metallsubstraten (magnetische Dünnfilme, Filme zur Härtung von Metalloberflächen usw.); Analyse von galvanischen Materialien wie makromolekularen Materialien, Papier und Linsen. Technische Daten für multifunktionales integriertes Messzubehör: Alpha-Achse (Neigung) Mindestschrittweite: 0,001 °/Schritt, Dynamikbereich: -45°-90° Minimale Schrittweite der β-Achse (Rotation): 0,001 °/Schritt, Dynamikbereich: 0 ° -360 ° Minimaler Schrittabstand auf der Z-Achse: 0,001 °/Schritt, Dynamikbereich: 0-10mm Probengröße: maximaler Durchmesser von 100 mm, einstellbare Dicke